• Title/Summary/Keyword: brain mechanism

Search Result 746, Processing Time 0.038 seconds

Mechanisms of 5-azacytidine-induced damage and repair process in the fetal brain

  • Ueno, Masaki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.55-64
    • /
    • 2006
  • The fetal central nervous system (CNS) is sensitive to diverse environmental factors, such as alcohol, heavy metals, irradiation, mycotoxins, neurotransmitters, and DNA damage, because a large number of processes occur during an extended period of development. Fetal neural damage is an important issue affecting the completion of normal CNS development. As many concepts about the brain development have been recently revealed, it is necessary to compare the mechanism of developmental abnormalities induced by extrinsic factors with the normal brain development. To clarify the mechanism of fetal CNS damage, we used one experimental model in which 5-azacytidine (5AZC), a DNA damaging and demethylating agent, was injected to the dams of rodents to damage the fetal brain. 5AzC induced cell death (apoptosis)and cell cycle arrest in the fetal brain, and it lead to microencephaly in the neonatal brain. We investigated the mechanism of apoptosis and cell cycle arrest in the neural progenitor cells in detail, and demonstrated that various cell cycle regulators were changed in response to DNA damage. p53, the guardian of genome, played a main role in these processes. Further, using DNA microarray analysis, tile signal cascades of cell cycle regulation were clearly shown. Our results indicate that neural progenitor cells have the potential to repair the DNA damages via cell cyclearrest and to exclude highly affected cells through the apoptotic process. If the stimulus and subsequent DNA damage are high, brain development proceeds abnormally and results in malformation in the neonatal brain. Although the mechanisms of fetal brain injury and features of brain malformation afterbirth have been well studied, the process between those stages is largely unknown. We hypothesized that the fetal CNS has the ability to repair itself post-injuring, and investigated the repair process after 5AZC-induced damage. Wefound that the damages were repaired by 60 h after the treatment and developmental processes continued. During the repair process, amoeboid microglial cells infiltrated in the brain tissue, some of which ingested apoptotic cells. The expressions of genes categorized to glial cells, inflammation, extracellular matrix, glycolysis, and neurogenesis were upregulated in the DNA microarray analysis. We show here that the developing brain has a capacity to repair the damage induced by the extrinsic stresses, including changing the expression of numerous genes and the induction of microglia to aid the repair process.

  • PDF

Heparin Attenuates the Expression of TNF $\alpha$-induced Cerebral Endothelial Cell Adhesion Molecule

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Seo, Gi-Ho;Lee, Jin-U;Kim, Joo-Hee;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.231-236
    • /
    • 2008
  • Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis factor $\alpha$ ($TNF{\alpha}$)-induced and nuclear factor kappa B (NF-${\kappa}B$)-dependent expression of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are crucial for inflammatory responses. Heparin selectively interfered with NF-${\kappa}B$ DNA-binding activity in the nucleus, which is stimulated by $TNF{\alpha}$. In addition, non-anticoagulant 2,3-O desulfated heparin (ODS) prevented NF-${\kappa}B$ activation by $TNF{\alpha}$, suggesting that the anti-inflammatory mechanism of heparin action in CECs lies in heparin's ability to inhibit the expression of cell adhesion molecules, as opposed to its anticoagulant actions.

The Relationship and Mechanism Underlying the Effect of Conscious Breathing on the Autonomic Nervous System and Brain Waves (의식적 호흡이 자율신경과 뇌파에 영향을 미치는 기전에 관하여)

  • Kang, Seung Wan
    • Perspectives in Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • Purpose: Breathing can be controlled either unconsciously or consciously. In Asian countries, various conscious breathing-control techniques have been practiced for many years to promote health and wellbeing. However, the exact mechanism underlying these techniques has not yet been established. The purpose of this study is to explore the physiological mechanism explaining how conscious breathing control could affect the autonomic nervous system, brain activity, and mental changes. Methods: The coupling phenomenon among breathing rhythm, heart rate variability, and brain waves was explored theoretically based on the research hypothesis and a review of the literature. Results: Respiratory sinus arrhythmia is a well-known phenomenon in which heart rate changes to become synchronized with breathing: inhalation increases heart rate and exhalation decreases it. HRV BFB training depends on conscious breathing control. During coherent sinusoidal heart rate changes, brain ${\alpha}$ waves could be enhanced. An increase in ${\alpha}$ waves was also found and the synchronicity between heart beat rhythm and brain wave became strengthened during meditation. Conclusion: In addition to the effect of emotion on breathing patterns, conscious breathing could change heart beat rhythms and brainwaves, and subsequently affect emotional status.

Neuroscientific Mechanism from Somatics in Dance Contents (무용콘텐츠에 내재된 소매틱스의 뇌과학적 메커니즘)

  • Kim, Eun Jung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.365-373
    • /
    • 2016
  • This research clarified a neuroscientific mechanism from somatics in dance contents developed using somatics methods through literature studies. To clarify these, first, I organized neuroscientific mechanism in somatics, second, researched neuroscientific mechanism in dance contents adopted from somatics practice. Somatics is limited to Feldenkrais Method. It is possible to explain neuroscientific mechanism through neuro-plasticity, proprioception and Sensory Integration. As a result Gaga and Tamalpa take the method Awareness thorugh Movement from Feldenrkrais. They integrate newly formed networks by informations from proprioceptive senses. This study is significant that suggest brain scientific practices in dances and somatics, explain mechanism between brain and body in dance practices and provide a base that explains mechanism of body movement in a view of brain science to choreographers and dancers to apply this mechanism in their study and training.

The acupuncture mechanism related brain in Medline and the journal of Korean acupuncture & moxibustion (PubMed와 대한침구학회지(大韓針灸學會誌) 논문(論文) 검색(檢索)을 통(通)한 침요법(鍼療法)과 뇌(腦)와의 관계(關係)에 대한 연구동향(硏究動向) 고찰(考察))

  • Kim, Hoo-Dong;Koh, Hyung-Kyun;Kim, Chang-Hwan
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.188-200
    • /
    • 2001
  • Background and Objetive : Acupuncture is a valuable method of oriental medicine with broad application in many disease. It is based on the experiences of traditional oriental medicine as well as on experimentally proven biological (biochemical and neurophysiological) effects. Acupuncture theory has been explained by the meridian system that is thought to be linked with particular organs. However, in western medicine it is held that many disorders are either controlled or affected by the brain. Material and Method : In order to review the studies concerned with the mechanism related brain, we have referred to the Pubmed site and the Journal of Korean acupuncture and moxibustion Result and Conculsion : Among the 12 studies in the Journal of Korean acupuncture and moxibustion, 8 papers related neurotransmitters were done by experimental study, 4 papers related brain mapping were done by clinical study. Among the 8 studies related brain mapping in the Pubmed site, 6 clinical studies using functional magnetic resonance imaging(fMRI) were done and I clinical study using single-photon emission computed tomography(SPECT) was done, I paper was review article. By the above result, it would be needed further research on the acupuncture mechanism related brain using SPECT, fMRI, positron emission tomography(PET) etc.

  • PDF

A Review of Literature on the Mechanism of Psychomotorik from Brain Science Perspective (뇌 과학적 관점에서 본 심리운동 기전에 대한 문헌고찰)

  • Kim, Sung-Woon;Kim, Woo-Cheol;Kim, Han-Cheol
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.591-601
    • /
    • 2017
  • The purpose of this study was to investigate the relationship between psychomotorik and brain function in domestic and foreign literature, and to clarify the mechanism of psychomotorik from the viewpoint of brain science, and to provide the teachers, therapists, The purpose of this study is to provide basic data which can enhance the understanding of the mechanism of psychomotorik. From the viewpoint of brain science, the study of domestic and foreign literature related to the mechanism of psychomotorik and the positive learning environment and various physical experiences in early life through the movement of psychomotorik are very important from the brain physiological point of view. The results of this study showed that the more the children move, the more the learning is improved and the healthy emotional control ability is improved and the brain is more likely to be optimized. Therefore, it is considered that this study, which has been studied through the brain science approach, provided very important basic information to understand the relation between movement of psychomotorik and brain function. In particular, understanding the possibility of optimizing the brain by cultivating a healthy emotional control ability and improving learning as children move more and more is considered to be a necessary process for educating our children well in the future. Until now, research on psychomotorik and brain function was lacking. Through this study, I hope that more people will have an opportunity to expand their understanding of the psychomotorik.

Design of Intelligent Information Processing Layer based on Brain (뇌 정보처리 원리 기반 지능형 정보처리 레이어 설계)

  • Kim Seong-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.45-48
    • /
    • 2006
  • The system that can generate biological brain information processing mechanism more precisely may have several abilities such as exact cognition, situation decision, learning and inference, and output decision. In this paper, to implement high level information processing and thinking ability in a complex system, the information processing layer based on the biological brain is introduced. The biological brain information processing mechanism, which is analyzed in this paper, provides fundamental information about intelligent engineering system, and the design of the layer that can mimic the functions of a brain through engineering definitions can efficiently introduce an intelligent information processing method having a consistent flow in various engineering systems. The applications proposed in this paper are expected to take several roles as a unified model that generates information process in various areas, such as engineering and medical field, with a dream of implementing humanoid artificial intelligent system.

  • PDF

A study of injury mechanism and neural plasticity of traumatic brain injury (외상성 뇌손상의 손상 기전과 신경가소성에 대한 고찰)

  • Song Ju-min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Traumatic brain injury is an insult to the brain caused by an external physical force, that may product a diminished or altered state of consciousness, which results in impairment of cognitive abilities or physical function. The purposes of this study were to overview injury mechanism and neural plasticity of traumatic brain injury. Injury mecanism includes exitotoxicity, production free radical, inflammation and apoptosis. Furthermore traumatic brain injury has protective mechanisms includes production of neural growth factor, heat shock protein, anti-inflammatory cytokines.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

The Mechanism of Overtraining Syndrome and the Role of Brain Neurotransmitters and Neuromodulators (과훈련 증후군의 기전 및 뇌 신경전달물질과 신경조절물질의 역할)

  • Kim, Han-Cheol;Kim, Woo-Cheol;Kim, Sung-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.461-476
    • /
    • 2017
  • The purpose of this study was to investigate the existing theories related to overtraining syndrome and to examine the mechanism of overtraining syndrome from the viewpoint of brain science by examining domestic and foreign literature related to the relationship between overtraining syndrome and brain neurotransmitter. The aim of this paper is to provide basic data that can improve the understanding of the mechanism of overtraining syndrome and the role of neurotransmitters and neuromodulators. The results of this study and a number of hypotheses about the overtraining syndrome were proposed, each with strengths and weaknesses. Similar symptoms that occur when the concentration of serotonin in the neurotransmitter increases are related to signs and symptoms of overtraining syndrome. However, it has not been validated to date because it can not distinguish the mechanism of the mediator between the central nervous system and the peripheral nerves. This study suggests that the mechanism of overtraining syndrome will provide important basic information to understand the complex causes of overtraining syndrome through the interaction of existing theory and brain neurotransmitter. Although there has been a lack of studies on the mechanism of overtraining syndrome and brain neurotransmitters so far, we hope that this study will provide an opportunity for more and more people to broaden their understanding of overtraining syndromes.