• Title/Summary/Keyword: brain endothelial cell

Search Result 73, Processing Time 0.025 seconds

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

The Neovascularization Effect of Bone Marrow Stromal Cells in Temporal Muscle after Encephalomyosynangiosis in Chronic Cerebral Ischemic Rats

  • Kim, Hyung-Syup;Lee, Hyung-Jin;Yeu, In-Seung;Yi, Jin-Seok;Yang, Ji-Ho;Lee, Il-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.4
    • /
    • pp.249-255
    • /
    • 2008
  • Objective : In Moyamoya disease, the primary goal of treatment is to improve collateral circulation through angiogenesis. In the present study, we obtained and sub-cultured bone marrow stromal cells (BMSCs) from rats without a cell-mediated immune response. Then, we injected the labeled BMSCs directly into adjacent temporal muscle during encephalomyosynangiosis (EMS). Three weeks after BMSC transplantation, we examined the survival of the cells and the extent of neovascularization. Methods : We divided 20 rats into a BMSC transplantation group (n=12) and a control group (n=8). Seven days after the induction of chronic cerebral ischemia, an EMS operation was performed, and labeled BMSCs ($1{\times}106^6/100\;{\mu}L$) were injected in the temporal muscle for the transplantation group, while an equivalent amount of culture solution was injected for the control group. Three weeks after the transplantation, temporal muscle and brain tissue were collected for histological examination and western blot analysis. Results : The capillary/muscle ratio in the temporal muscle was increased in the BMSC transplantation group compared to the control group, showing a greater increase of angiogenesis (p<0.05). In the brain tissue, angiogenesis was not significantly different between the two groups. The injected BMSCs in the temporal muscle were vascular endothelial growth factor (VEGF)-positive by immunofluorescence staining. In both temporal muscle and brain tissue, the expression of VEGF by western blot analysis was not much different between the two groups. Conclusion : During EMS in a chronic cerebral ischemia rat model, the injection of BMSCs resulted in accelerated angiogenesis in the temporal muscle compared to the control group.

Prior Use of 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase Inhibitor, Simvastatin Fails to Improve Outcome after Experimental Intracerebral Hemorrhage

  • Jwa, Cheol-Su;Yi, Hyeong-Joong;Oh, Suck-Jun;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.5
    • /
    • pp.403-408
    • /
    • 2011
  • Objective : Contrary to some clinical belief, there were quite a few studies regarding animal models of intracerebral hemorrhage (ICH) $in$ $vivo$ suggesting that prior use of statins may improve outcome after ICH. This study reports the effect of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase inhibitor, simvastatin given before experimental ICH. Methods : Fifty-one rats were subjected to collagenase-induced ICH, subdivided in 3 groups according to simvastatin treatment modality, and behavioral tests were done. Hematoma volume, brain water content and hemispheric atrophy were analyzed. Immunohistochemical staining for microglia (OX-42) and endothelial nitric oxide synthase (eNOS) was performed and caspase-3 activity was also measured. Results : Pre-simvastatin therapy decreased inflammatory reaction and perihematomal cell death, but resulted in no significant reduction of brain edema and no eNOS expression in the perihematomal region. Finally, prior use of simvastatin showed less significant improvement of neurological outcome after experimental ICH when compared to post-simvastatin therapy. Conclusion : The present study suggests that statins therapy after ICH improves neurological outcome, but prior use of statins before ICH might provide only histological improvement, providing no significant impact on neurological outcome against ICH.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

Flavonoids: An Emerging Lead in the P-glycoprotein Inhibition

  • Gadhe, Changdev G.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 2012
  • Multidrug resistance is a major obstacle in cancer chemotherapy. Cancer cells efflux chemotherapeutic drug out of cell by means of transporter and reduce the active concentration of it inside cell. Such transporters are member of the ATP binding cassettes (ABC) protein. It includes P-gp, multiple resistant protein (MRP), and breast cancer resistant protein (BCRP). These proteins are widely distributed in the human cells such as kidney, lung, endothelial cells of blood brain barrier etc. However, there are number of drugs developed for it, but most of them are getting transported by it. So, still there is necessity of a good modulator, which could effectively combat the transport of chemotherapeutic agents. Natural products origin modulators were found to be effective against transporter such as flavonoids, which belongs to third generation modulators. They have advantage over synthetic inhibitor in the sense that they have simple structure and abundant in nature. This review focuses on the P-gp structure its architecture, efflux mechanism, herbal inhibitors and their mechanism of action.

Feature of cerebral infarction with tsutsugamushi disease (쯔쯔가무시병과 동반된 뇌경색의 특징)

  • Choi, Pahn Kyu;Kang, Hyun Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.178-184
    • /
    • 2017
  • This study was performed on 16 patients diagnosed with tsutsugamushi disease and cerebral infarction from January 2007 to December 2015. An acute cerebral infarction was diagnosed by brain MRI and MRA. Tsutsugamushi disease was diagnosed using a polymerase chain reaction. To distinguish the difference between the generalized cerebral infarction and infarction with tsutsugamushi disease, the blood pressure and body temperature were measured uponadmission. In general, the blood pressure increases during an acute cerebral infarction. Interestingly, in this study, 12 patients showed a systolic blood pressure less than 130 mmHg uponadmission. The location of the cerebral infarction and whether single or multiple cerebral infarction were examined. Thirteen patients had a cerebral infarction in anterior circulation and 3 patients developed in posterior circulation. To evaluate the coagulation disorders, prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer, fibrinogen, fibrin degradation product (FDP). D-dimer, which is generally known to increase in an acute cerebral infarction, showed a significant increase in the 13 patients. Fibrin degradation products (FDP) showed a significant increase in 15 patients. The pathophysiological mechanism of tsutsugamushi disease is known as vasculitis, which may result in an endothelial cell injury and proliferation of the endothelial wall, which may lead to a cerebral infarction accompanied by coagulopathy. Without endothelial cell damage and proliferation, a vasospasm caused by vasculitis may cause vasoconstriction and cerebral infarction.

Expression of Tbr2 in the Hippocampus Following Pilocarpine-induced Status Epilepticus (Pilocarpine에 의한 경련중첩증 후 해마에서 Tbr2 발현에 관한 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1532-1540
    • /
    • 2013
  • T-box transcription factor 2 (Tbr2) is a member of the T-box family of transcription factors and it plays an important role in brain development, progenitor cell proliferation, and the modulation of differentiation and function in immune cells, such as CD8+ T cells and natural killer cells. This study aims to elucidate the involvement of Tbr2 in the pathophysiological events following pilocarpine-induced status epilepticus in mice. Status epilepticus resulted in prominent neuronal cell death in discrete brain regions, such as CA3, the hilus, and the piriform cortex. Interestingly, when the immunoreactivity of Tbr2 was examined two days after status epilepticus, it was transiently increased in CA3 and in the piriform cortex. Tbr2-positive cells in CA3 and the piriform cortex were double-labeled with CD11b, a marker of microglia and a subset of white blood cells, such as monocytes, CD8+ T cells, and natural killer cells. Moreover, the double-labeled cells with Tbr2 and CD11b showed amoeboid morphology, and this data indicates that Tbr2-expressing cells may be reactive microglia or infiltrating white blood cells. Furthermore, clustered Tbr2-positive cells were observed in the platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive blood vessels near the CA3 area, which suggests that Tbr2-positive cells may be infiltrating the white blood cells. Based on this data, this study is the first to indicate the involvement of Tbr2 in neuropathophysiology in status epilepticus.

Characterization of Plasmodium berghei Homologues of T-cell Immunomodulatory Protein as a New Potential Candidate for Protecting against Experimental Cerebral Malaria

  • Cui, Ai;Li, Yucen;Zhou, Xia;Wang, Lin;Luo, Enjie
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.101-115
    • /
    • 2019
  • The pathogenesis of cerebral malaria is biologically complex and involves multi-factorial mechanisms such as microvascular congestion, immunopathology by the pro-inflammatory cytokine and endothelial dysfunction. Recent data have suggested that a pleiotropic T-cell immunomodulatory protein (TIP) could effectively mediate inflammatory cytokines of mammalian immune response against acute graft-versus-host disease in animal models. In this study, we identified a conserved homologue of TIP in Plasmodium berghei (PbTIP) as a membrane protein in Plasmodium asexual stage. Compared with PBS control group, the pathology of experimental cerebral malaria (ECM) in rPbTIP intravenous injection (i.v.) group was alleviated by the downregulation of pro-inflammatory responses, and rPbTIP i.v. group elicited an expansion of regulatory T-cell response. Therefore, rPbTIP i.v. group displayed less severe brain pathology and feverish mice in rPbTIP i.v. group died from ECM. This study suggested that PbTIP may be a novel promising target to alleviate the severity of ECM.

Angiogenic Effect of Cardiac Ankyrin Repeat Protein Overexpression in Vascular Endo-thelial Cell (Cardiac Ankyrin Repeat Protein의 과량발현이 혈관내피세포에서 갖는 혈관신생 촉진 효과)

  • Kong, Hoon-Young;Byun, Jong-Hoe
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.282-288
    • /
    • 2008
  • Tissue ischemia resulting from the constriction or obstruction of blood vessels leads to an illness that may affect many organs including the heart, brain, and legs. In recent years, considerable progress has been made in the field of therapeutic angiogenesis and the new approaches are expected to cure those "no-option patients" who are unsuited to conventional therapies. Although single angiogenic growth factor may be successful in inducing angiogenesis, combination of multiple growth factors is increasingly sought these days to augment the therapeutic responses. This trend is proper in light of the fact that blood vessel formation is a complex and multi-step process that requires the actions of many different factors. To meet the growing need for functionally significant blood flow recovery in the ischemic tissues, a novel strategy that can provide concerted actions of multiple factors is required. One way to achieve such a goal is to use a transcription factor that can orchestrate the expression of multiple target genes in the ischemic region and thus induce significant level of angiogenesis. Here, a putative transcription factor, cardiac ankyrin repeat protein (CARP), was evaluated in adenoviral vector context for angiogenic activity in human umbilical vein endothelial cells. The results indicated significant increase in proliferation, capillary-like structure formation, and induction of vascular endothelial growth factor, a typical angiogenic gene. Taken together, these results suggest that CARP represents itself as a novel target for therapeutic angiogenesis and warrants further investigation.

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.