• Title/Summary/Keyword: brain diseases

Search Result 880, Processing Time 0.04 seconds

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son;Choong Je Ma
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

Fully Automatic Segmentation and Volumetry on Brain MRI of Coronal Section

  • Sung, Yun-Chang;Song, Chang-Jun;Noh, Seung-Moo;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.441-445
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image of coronal section and to calculate the volume of each. First, we segmented the whole region of a brain from a black colored background, a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenertive diseases such as Alzheimer’s disease and cerebral palsy.

  • PDF

Brain Hypoxia Imaging (뇌 저산소증 영상)

  • Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.91-96
    • /
    • 2007
  • The measurement of pathologically low levels of tissue $pO_2$ is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowaday have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. $^{18}F-MISO$ PET and $^{99}mTc-EC-metronidazole$ SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using $^{123}I-IAZA$ in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

Minocycline Directly Blocks Activation of Caspases After Oxidative Stress in PC12 Cells

  • Choi, Yu-Keum;Kim, Gab-Seok;Han, Byung-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.79.2-79.2
    • /
    • 2003
  • Minocycline is known to protect neurons from microglia-mediated cell death in many experimental models of brain diseases including ischemic stroke, Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), traumatic brain injury, multiple sclerosis, and Parkinson's disease. Activation of caspase-2, 3, 8, and 9 was evident within 2-8 hr following oxidative insult with 0.5 mM hydrogen peroxide in PC12 cells. Minocycline significantly attenuated activation of these caspases up to 18 hr, resulting a significant increase in cell viability as assessed by MTT assay. (omitted)

  • PDF

Multiple brain abscesses treated by extraction of the maxillary molars with chronic apical lesion to remove the source of infection

  • Jung, Ki-Hyun;Ro, Seong-Su;Lee, Seong-Won;Jeon, Jae-Yoon;Park, Chang-Joo;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.25.1-25.5
    • /
    • 2019
  • Background: Brain abscess is a life-threatening condition that occurs due to complications during a neurosurgical procedure, direct cranial trauma, or the presence of local or distal infection. Infection in the oral cavity can also be considered a source of brain abscess. Case presentation: A 45-year-old male patient was transported with brain abscess in the subcortical white matter. Navigation-guided abscess aspiration and drainage was performed in the right mid-frontal lobe, but the symptoms continued to worsen after the procedure. A panoramic radiograph showed alveolar bone resorption around the maxillary molars. The compromised maxillary molars were extracted under local anesthesia, and antibiotics were applied based on findings from bacterial culture. A brain MRI confirmed that the three brain abscesses in the frontal lobe were reduced in size, and the patient's symptoms began to improve after the extractions. Conclusion: This is a rare case report about multiple uncontrolled brain abscesses treated by removal of infection through the extraction of maxillary molars with odontogenic infection. Untreated odontogenic infection can also be considered a cause of brain abscess. Therefore, it is necessary to recognize the possibility that untreated odontogenic infection can lead to serious systemic inflammatory diseases such as brain abscess. Through a multidisciplinary approach to diagnosis and treatment, physicians should be encouraged to consider odontogenic infections as a potential cause of brain abscesses.

Imperatorin is Transported through Blood-Brain Barrier by Carrier-Mediated Transporters

  • Tun, Temdara;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • Imperatorin, a major bioactive furanocoumarin with multifunctions, can be used for treating neurodegenerative diseases. In this study, we investigated the characteristics of imperatorin transport in the brain. Experiments of the present study were designed to study imperatorin transport across the blood-brain barrier both in vivo and in vitro. In vivo study was performed in rats using single intravenous injection and in situ carotid artery perfusion technique. Conditionally immortalized rat brain capillary endothelial cells were as an in vitro model of blood-brain barrier to examine the transport mechanism of imperatorin. Brain distribution volume of imperatorin was about 6 fold greater than that of sucrose, suggesting that the transport of imperatorin was through the blood-brain barrier in physiological state. Both in vivo and in vitro imperatorin transport studies demonstrated that imperatorin could be transported in a concentration-dependent manner with high affinity. Imperatorin uptake was dependent on proton gradient in an opposite direction. It was significantly reduced by pretreatment with sodium azide. However, its uptake was not inhibited by replacing extracellular sodium with potassium or N-methylglucamine. The uptake of imperatorin was inhibited by various cationic compounds, but not inhibited by TEA, choline and organic anion substances. Transfection of plasma membrane monoamine transporter, organic cation transporter 2 and organic cation/carnitine transporter 2/1 siRNA failed to alter imperatorin transport in brain capillary endothelial cells. Especially, tramadol, clonidine and pyrilamine inhibited the uptake of [$^3H$]imperatorin competitively. Therefore, imperatorin is actively transported from blood to brain across the blood-brain barrier by passive and carrier-mediated transporter.

GEDA: New Knowledge Base of Gene Expression in Drug Addiction

  • Suh, Young-Ju;Yang, Moon-Hee;Yoon, Suk-Joon;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.441-447
    • /
    • 2006
  • Abuse of drugs can elicit compulsive drug seeking behaviors upon repeated administration, and ultimately leads to the phenomenon of addiction. We developed a procedure for the standardization of microarray gene expression data of rat brain in drug addiction and stored them in a single integrated database system, focusing on more effective data processing and interpretation. Another characteristic of the present database is that it has a systematic flexibility for statistical analysis and linking with other databases. Basically, we adopt an intelligent SQL querying system, as the foundation of our DB, in order to set up an interactive module which can automatically read the raw gene expression data in the standardized format. We maximize the usability of this DB, helping users study significant gene expression and identify biological function of the genes through integrated up-to-date gene information such as GO annotation and metabolic pathway. For collecting the latest information of selected gene from the database, we also set up the local BLAST search engine and non-redundant sequence database updated by NCBI server on a daily basis. We find that the present database is a useful query interface and data-mining tool, specifically for finding out the genes related to drug addiction. We apply this system to the identification and characterization of methamphetamine-induced genes' behavior in rat brain.

GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats

  • Lee, Jee Youn;Choi, Hae Young;Park, Chan Sol;Pyo, Mi Kyung;Yune, Tae Young;Kim, Go Woon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • Background: Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ~30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods: Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results: The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion: These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Secondary Brain Tumor Caused by Infiltration of Nasal Neuroendocrine Carcinoma in a Chihuahua Dog: Clinical, Magnetic Resonance Imaging and Histopathological Findings (치와와견에서 발생한 비강 신경내분비암종의 침윤에 의한 이차적인 뇌종양 증례; 자기공명영상과 조직학적 특성)

  • Jung, Dong-In;Kang, Byeong-Teck;Kim, Ju-Won;Kim, Ha-Jung;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.186-189
    • /
    • 2010
  • A 14-year-old neutered female Chihuahua was presented because of seizure episodes and circling to the left side. Based on neurological examination, the lesion was localized on left forebrain. The mass in the left nasal cavity and breaching of the nasal septum were seen magnetic resonance images. And there was a presence of contrast enhanced mass involving the rostral left brain. Based on diagnostic image analysis, this lesion strongly suggested secondary brain tumor infiltrated by nasal cavity. The patient's symptoms were well controlled by a combination therapy of prednisolone and lomustine (CCNU), and survived for two months after diagnosis. This case was definitively diagnosed as a nasal neuroendocrine carcinoma based on histopathological findings. This report describes the clinical findings, imaging characteristics, and pathologic features of secondary brain tumor which caused by infiltration of nasal neuroendocrine carcinoma in a dog.