Browse > Article

Brain Hypoxia Imaging  

Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Medical School)
Publication Information
Nuclear Medicine and Molecular Imaging / v.41, no.2, 2007 , pp. 91-96 More about this Journal
Abstract
The measurement of pathologically low levels of tissue $pO_2$ is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowaday have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. $^{18}F-MISO$ PET and $^{99}mTc-EC-metronidazole$ SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using $^{123}I-IAZA$ in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.
Keywords
Hypoxia; Nitroimidazole; Ischemic penumbra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song HC, Bom HS, Cho KH, Kim BC, Seo JJ, Kim CG, et al. Prognostication of recovery in patients with acute ischemic stroke through the use of brain SPECT with Technetium-99m-labeled metronidazole. Stroke 2003;34:982-6   DOI   ScienceOn
2 Ziemer LS, Evans SM, Kachur AV, Shuman AL, Cardi CA, Jenkins WT, et al. Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole $^{18}F-EF5$. Eur J Nucl Med Mol Imaging 2003;30:259-66   DOI   ScienceOn
3 Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-80   DOI
4 Spratt NJ, Ackerman U, Tochon-Danguy HJ, Donnan GA, Howells DW. Characterization of fluoromisonidazole binding in stroke. Stroke 2006;37:1862-7   DOI   ScienceOn
5 Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, et al. The fate of hypoxic tissue on $^{18}F-fluoromisonidazole$ positron emission tomography after ischemic stroke. Ann Neurol 2000;48:228-35   DOI   ScienceOn
6 Falcao AL, Reutens DC, Markus R, Koga M, Read SJ, Tochon-Danguy H, et al. The resistance to ischemia of white and gray matter after stroke. Ann Neurol 2004;56:695-701   DOI   ScienceOn
7 Mathias CJ, Welch MJ, Kilbourn MR, Jerabek PA, Patrick TB, Raichle ME, et al. Radiolabeled hypoxic cell sensitizers: tracers for assessment of ischemia. Life Sci 1987;41:199-206   DOI   ScienceOn
8 Yamamoto F, Aoki M, Furusawa Y, Ando K, Kuwabara Y, Masuda K, et al. Synthesis and evaluation of 4-bromo-1-(3-[$^{18}F$]fluoropropyl)- 2-nitroimidazole with a low energy LUMO orbital designed as brain hypoxia-targeting imaging agent. Biol Pharm Bull 2002;25:616-21   DOI   ScienceOn
9 Vinjamuri S, O'Driscoll K, Maltby P, McEwan AJ, Wiebe LI, Critchley M. Identification of hypoxic regions in traumatic brain injury. Clin Nucl Med 1999;24:891-2   DOI
10 Saita K, Chen M, Spratt NJ, Porritt MJ, Liberatore GT, Read SJ, et al. Imaging the ischemic penumbra with $^{18}F-fluoromisonidazole$ in a rat model of ischemic stroke. Stroke 2004;35:975-80   DOI   ScienceOn
11 Hoffman JM, Rasey JS, Spence AM, Shaw DW, Krohn KA. Binding of the hypoxia tracer [$^{3}H$]misonidazole in cerebral ischemia. Stroke 1987;18:168-76   DOI   ScienceOn
12 Di Rocco RJ, Kuczynski BL, Pirro JP, Bauer A, Linder KE, Ramalingam K, et al. Imaging ischemic tissue at risk of infarction during stroke. J Cereb Blood Flow Metab 1993;13:755-62   DOI   ScienceOn
13 Markus R, Donnan GA, Kazui S, Read S, Hirano T, Scott AM, et al Statistical parametric mapping of hypoxic tissue identified by [$^{18}F$]fluoromisonidazole and positron emission tomography following acute ischemic stroke. Neuroimage 2002;16:425-33   DOI   ScienceOn
14 Cook GJ, Houston S, Barrington SF, Fogelman I. Technetium- 99m-labeled HL91 to identify tumor hypoxia: correlation with fluorine-18-FDG. J Nucl Med 1998;39:99-103
15 Hirano T, Read SJ, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Egan GF, et al. No evidence of hypoxic tissue on $^{18}F-fluoromisonidazole$ PET after intracerebral hemorrhage. Neurology 1999;53: 2179-82   DOI   ScienceOn
16 Muller CE. Basic Chemistry of 2-Nitroimidazoles (Azomycin derivatives). In: Machulla H-J, editors. Imaging of Hypoxia Tracer Developments. 1st ed. Dordrecht: Kluwer Academic Publishers; 1999. p. 47-59
17 Bergeron M, Evans SM, Sharp FR, Koch CJ, Lord EM, Ferriero DM. Detection of hypoxic cells with the 2-nitroimidazole, EF5, correlates with early redox changes in rat brain after perinatal hypoxia-ischemia. Neuroscience 1999;89:1357-66   DOI   ScienceOn
18 Evans SM, Kachur AV, Shiue CY, Hustinx R, Jenkins WT, Shive GG, et al. Noninvasive detection of tumor hypoxia using the 2-nitroimidazole $[^{18}F]EF1$. J Nucl Med 2000;41:327-36
19 Lewis J, Laforest R, Buettner T, Song S, Fujibayashi Y, Connett J, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): An agent for radiotherapy. Proc Natl Acad Sci U S A 2001;98:1206-11   DOI   ScienceOn
20 Lythgoe MF, Williams SR, Wiebe LI, McEwan AJ, Gordon I. Autoradiographic imaging of cerebral ischaemia using a combination of blood flow and hypoxic markers in an animal model. Eur J Nucl Med 1997;24:16-20   DOI   ScienceOn
21 Markus R, Donnan G, Kazui S, Read S, Reutens D. Penumbral topography in human stroke: methodology and validation of the 'Penumbragram'. Neuroimage 2004;21:1252-9   DOI   ScienceOn
22 Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, et al. Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain 2004;127:1427-36   DOI   ScienceOn
23 Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by $^{18}F-fluoromisonidazole$ positron emission tomography in humans after ischemic stroke. Stroke 2003;34:2646-52   DOI   ScienceOn
24 Read SJ, Hirano T, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Chan JG, et al. Identifying hypoxic tissue after acute ischemic stroke using PET and $^{18}F-fluoromisonidazole$. Neurology 1998;51:1617-21   DOI   ScienceOn
25 Hoebers FJ, Janssen HL, Olmos AV, Sprong D, Nunn AD, Balm AJ, et al. Phase 1 study to identify tumour hypoxia in patients with head and neck cancer using technetium-99m BRU 59-21. Eur J Nucl Med Mol Imaging 2002;29:1206-11   DOI   ScienceOn
26 Chapman JD, Schneider RF, Urbain JL, Hanks GE. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation. Semin Radiat Oncol 2001;11:47-57   DOI   ScienceOn
27 Takasawa M, Beech JS, Fryer TD, Hong YT, Hughes JL, Igase K, Jones PS, et al. Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using $^{18}F-fluoromisonidazole$ and positron emission tomography: a pilot study. J Cereb Blood Flow Metab 2007;27:679-89   DOI