• Title/Summary/Keyword: brain development

Search Result 1,490, Processing Time 0.032 seconds

Introduction to EEG-Based Brain-Computer Interface (BCI) Technology (뇌파 기반 뇌-컴퓨터 인터페이스 기술의 소개)

  • Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • There are a great numbers of disabled individuals who cannot freely move or control specific parts of their body because of serious neurological diseases such as spinal cord injury, amyotrophic lateral sclerosis, brainstem stroke, and so on. Brain-computer interfaces (BCIs) can help them to drive and control external devices using only their brain activity, without the need for physical body movements. Over the past 30 years, several Bel research programs have arisen and tried to develop new communication and control technology for those who are completely paralyzed. Thanks to the rapid development of computer science and neuroimaging technology, new understandings of brain functions, and most importantly many researchers' efforts, Bel is now becoming 'practical' to some extent. The present review article summarizes the current state of electroencephalogram (EEG)-based Bel, which have been being studied most widely, with specific emphasis on its basic concepts, system developments, and prospects for the future.

Molecular Mechanisms of Synaptic Specificity: Spotlight on Hippocampal and Cerebellar Synapse Organizers

  • Park, Dongseok;Bae, Sungwon;Yoon, Taek Han;Ko, Jaewon
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.373-380
    • /
    • 2018
  • Synapses and neural circuits form with exquisite specificity during brain development to allow the precise and appropriate flow of neural information. Although this property of synapses and neural circuits has been extensively investigated for more than a century, molecular mechanisms underlying this property are only recently being unveiled. Recent studies highlight several classes of cell-surface proteins as organizing hubs in building structural and functional architectures of specific synapses and neural circuits. In the present minireview, we discuss recent findings on various synapse organizers that confer the distinct properties of specific synapse types and neural circuit architectures in mammalian brains, with a particular focus on the hippocampus and cerebellum.

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Prasad, Renuka;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.577-588
    • /
    • 2019
  • DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Blood-brain barrier-on-a-chip for brain disease modeling and drug testing

  • Cui, Baofang;Cho, Seung-Woo
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.213-219
    • /
    • 2022
  • The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications.

Development of Education Program for Family of Patients with Brain Injury (무의식 뇌손상 환자의 가족을 위한 교육자료 개발)

  • Yoo, Yang-Sook;Yun, Sun Hee;Cho, Ok-Hee
    • Journal of Korean Academic Society of Home Health Care Nursing
    • /
    • v.19 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • Purpose: This study is a methodological study to develop education program for families of patients with brain injury. Method: This education program is on the basis of education items identified in a previous research, and literature review, and again this was developed by educational program for families of patients with brain injury that consist of items which pass through proof of content validity of special group. This study established the goal of the study about selected items and made out a preliminary education program, and it was reviewed and corrected by evidence of content validity of the special group and the degree of difficulty. Results: The final education program content consists of 6 areas. : disease, cure and care, rehabilitation, family and others. Conclusion: This program will expect to be utilized to keep optimal health state, also it can prevent various problems from happening to patients with brain injury; moreover, we expect that it would improve the quality of life.

  • PDF

Age- and Area-Dependent Distinct Effects of Ethanol on Bax and Bcl-2 Expression in Prenatal Rat Brain

  • Lee, Hae-Young;Naha, Nibedita;Kim, Jong-Hun;Jo, Mi-Ja;Min, Kwan-Sik;Seong, Hwan-Hoo;Shin, Dong-Hoon;Kim, Myeong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1590-1598
    • /
    • 2008
  • Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanol-treated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bc1-2 expression.

Regional Difference of ROS Generation, lipid Peroxidation, and Antioxidant Enzyme Activity In Rat Brain and Their Dietary Modulation

  • Baek, Bong-Sook;Kwon, Hyun-Joo;Lee, Kyoung-Hee;Yoo, Mi-Ae;Kim, Kyu-Won;Yuji-Ikeno;Yu, Byung-Pal;Chung, Hae-Young
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.361-366
    • /
    • 1999
  • One of the potential causes of age-related neuronal damage can be reactive oxygen species (ROS), as the brain is particularly sensitive to oxidative damage. In the present study, we investigated the effects of aging and dietary restriction (DR) on ROS generation, lipid peroxidation, and antioxidant enzymes in cerebrum, hippocampus, and cerebellum of 6-, 12-, 18-, and 24-month-old rats. ROS generation significantly increased with age in cerebrum of ad libitum (AL) rats. However, no significant age-difference was observed in hippocampus and cerebellum. DR significantly decreased ROS generation in cerebrum and cerebellum at 24-months. On the other hand, the increased lipid peroxidation of AL rats during aging was significantly reduced by DR in all regions. Our results further showed that catalase activity decreased with age in cerebellum of AL rats, which was reversed by DR, although SOD activity had little change by aging and DR in all regions. In a similar way, glutathione (GSH) peroxidase activity increased with age in cerebrum of AL rats, while DR suppressed it at 24-months. These data further support the evidence that the vulnerability to oxidative stress in the brain is region-specific.

  • PDF

The New Design of Brain Measurement System for Immersive Virtual Reality (가상현실에서의 뇌파측정을 위한 디자인 고찰 및 제안)

  • Kim, Gyoung Mo;Jeon, Joonhyun
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2017
  • With the technological development, benefits of Virtual Reality (VR) has become a key of medium in communication research. In addition, explaining human minds with physiological data has become more popular since more accurate and detailed data can be expressed. However, reading brain signals in a virtual environment setting with psychophysiological measures (e.g. EEG and fNIRS) has remained a difficulty for researchers due to a technical constraint. Since a combination of cables for brain measures attached to a head cap obstruct wearing a Head-Mounted Display (HMD) over the cap, measuring brain activities with multiple channels on several areas of the brain is inappropriate in the VR setting. Therefore, we have developed a new brain measurement cap that includes probe connectors and brackets enabling a direct connection to the HMD. We highly expect this method would contribute to cognitive psychology research measuring brain signals with new technology.

Image-guided Stereotactic Neurosurgery: Practices and Pitfalls

  • Jung, Na Young;Kim, Minsoo;Kim, Young Goo;Jung, Hyun Ho;Chang, Jin Woo;Park, Yong Gou;Chang, Won Seok
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 2015
  • Image-guided neurosurgery (IGN) is a technique for localizing objects of surgical interest within the brain. In the past, its main use was placement of electrodes; however, the advent of computed tomography has led to a rebirth of IGN. Advances in computing techniques and neuroimaging tools allow improved surgical planning and intraoperative information. IGN influences many neurosurgical fields including neuro-oncology, functional disease, and radiosurgery. As development continues, several problems remain to be solved. This article provides a general overview of IGN with a brief discussion of future directions.