Browse > Article

Age- and Area-Dependent Distinct Effects of Ethanol on Bax and Bcl-2 Expression in Prenatal Rat Brain  

Lee, Hae-Young (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
Naha, Nibedita (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
Kim, Jong-Hun (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
Jo, Mi-Ja (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
Min, Kwan-Sik (Animal Biotechnology, GSBIT, Hankyong National University)
Seong, Hwan-Hoo (Animal Biotechnology Division, National Institute of Animal Science, RDA)
Shin, Dong-Hoon (Department of Food and Biotechnology, Korea University)
Kim, Myeong-Ok (Division of Life Science and Applied Life Science (Brain Korea 21), Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.9, 2008 , pp. 1590-1598 More about this Journal
Abstract
Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanol-treated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bc1-2 expression.
Keywords
Bax; Bcl-2; ethanol; prenatal rat brain; programmed cell death;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Gohlke, J. M., W. C. Griffith, S. M. Bartell, T. A. Lewandowski, and E. M. Faustman. 2002. A computational model for neocortical neurogenesis predicts ethanol-induced neocortical neuron number deficits. Dev. Neurosci. 24: 467-477   DOI   ScienceOn
2 Roth, K. A. and C. D'sa. 2001. Apoptosis and brain development. Ment. Ratard. Dev. Disabil. Res. 7: 261-266   DOI   ScienceOn
3 Maier, S. E., W. J. Chen, and J. R. West. 1996. The effects of timing and duration of alcohol exposure on development of the fetal brain, pp. 27-50. In E. L. Abel (ed.). Fetal Alcohol Syndrome: From Mechanism to Revention. CRC Press, Boca Raton, FL, U.S.A.
4 Miller, M. W. 1992. Effects of prenatal exposure to ethanol on cell proliferation and neuronal migration, pp 47-69. In M. W. Miller (ed.). Development of the Central Nervous System: Effects of Alcohol and Opiates. Wiley-Liss, New York, U.S.A
5 Mooney, S. M. and M. W. Miller. 2000. Expression of Bcl-2, Bax, and caspase-3 in the brain of the developing rat. Dev. Brain Res. 123: 103-117   DOI   ScienceOn
6 Mooney, S. M. and M. W. Miller. 2001. Effects of prenatal exposure to ethanol on the expression of Bcl-2, Bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Res. 911: 71-81   DOI   ScienceOn
7 Olney, J. W., D. F. Wozniak, V. Jevtovic-Todorovic, N. B. Farber, P. Bittigau, and C. Ikonomidou. 2002. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol. 4: 488-498
8 Raff, M. C., J. F. Barres, B. A. Barres, J. F. Burne, H. S. Coles, Y. Ishizaki, and M. D. Jacobson. 1993. Programmed cell death and the control of cells survival: Lesson from the nervous system. Science 262: 695-700   DOI
9 Sakata-Haga, H., K. Sawada, S. Hisano, and Y. Fukui. 2002. Administration schedule for an ethanol-containing diet in pregnancy affects types of offspring brain malformations. Acta Neuropathol. 104: 305-312
10 Smith, S. M. 1997. Alcohol-induced cell death in the embryo. Alcohol Health Res. World 21: 296-297
11 Blaschke, A. J., K. Staley, and J. Chun. 1996. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122: 1165-1174
12 Gogvadze, V., J. D. Robertson, B. Zhivotovsky, and S. Orrenius. 2001. Cytochrome c release occurs via $Ca^{2+}-dependent$ and $Ca^{2+}-independent$ mechanisms that are regulated by Bax. J. Biol. Chem. 276: 19066-19071   DOI   ScienceOn
13 Miki, T., S. J. Harris, P. A. Wilce, Y. Takeuchi, and K. S. Bedi. 2001. Effects of alcohol exposure during early life on neuron numbers in the rat hippocampus, I. Hilus neurons and granule cells. Hippocampus 13: 388-398   DOI   ScienceOn
14 Roth, K. A., C. Kuan, T. F. Haydar, C. D'Sa-Eipper, K. S. Shindler, T. S. Zheng, K. Kuida, R. A. Flavell, and P. Rakic. 2000. Epistatic and independent functions of caspase-3 and bcl-XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97: 466-471
15 Jung, K. H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}-galactosidase$ via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442   과학기술학회마을
16 Miller, M. W. 1986. Effects of alcohol on the generation and migration of cerebral cortical neurons. Science 233: 1308-1311   DOI
17 Krajewska, M. 2002. Dynamics of expression of apoptosisregulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 9: 145-157   DOI   ScienceOn
18 Martin, Z., A. Hueber, W. Baum, and G. Evan. 2001. Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta 1551: 1-37
19 de la Monte, S. M. and J. R. Wand. 2001. Mitochondrial DNA damage and impaired mitochondrial function contribute to apoptosis of insulin-stimulated ethanol-exposed neuronal cells. Alcohol Clin. Exp. Res. 25: 898-906   DOI   ScienceOn
20 Hirai, K., H. Yoshioka, M. Kihara, K. Hasegawa, T. Sawada, and S. Fushiki. 1999. Effects of ethanol on neuronal migration and neural cell adhesion molecules in the embryonic rat cerebral cortex: A tissue culture study. Brain Res. Dev. Brain Res. 118: 205-210   DOI
21 Yoshida, H., Y. Y. Kong, R. Yoshida, A. J. Elia, A. Hakem, R. Hakem, J. M. Penninger, and T. W. Mak. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739-750   DOI   ScienceOn
22 Cory, S. and J. M. Adams. 2002. The Bcl-2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2: 647-656   DOI   ScienceOn
23 Jones, K. L., D. W. Smith, C. N. Ulleland, and A. P. Streissguth. 1973. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1: 1267-1271
24 Bibel, M. and Y. A. Barde. 2000. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14: 2919-2937   DOI   ScienceOn
25 Kuida, K., T. F. Haydar, C. Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, M. S. Su, P. Rakic, and R. A. Flavell. 1998. Reduced apoptosis and cytochrome c mediated caspase activation in mice lacking caspase 9. Cell 94: 325-337   DOI   ScienceOn
26 Lee, J. Y., J. Y. Kim, Y. G. Lee, M. H. Rhee, E. K. Hong, and J. Y. Cho. 2008. Molecular mechanism of macrophage activation by exopolysaccharides from liquid culture of Lentinus edodes. J. Microbiol. Biotechnol. 18: 355-364   과학기술학회마을
27 Dunty Jr., W. C., S. Y. Chen, R. M. Zucker, D. B. Dehart, and K. K. Sulik. 2001. Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: Implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin. Exp. Res. 25: 1523-1535   DOI   ScienceOn
28 Tenkova, T., C. Young, K. Dikranian, J. Labruyere, and J. W. Olney. 2003. Ethanol-induced apoptosis in the developing visual system during synaptogenesis. Invest. Ophthalmol. Vis. Sci. 44: 2809-2817   DOI   ScienceOn
29 Cecconi, F., G. Alvarez-Bolado, B. I. Meyer, K. A. Roth, and P. Gruss. 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94: 727-737   DOI   ScienceOn
30 Ikonomidou, C., P. Bittigau, M. J. Ishimaru, D. F. Wozniak, C. Koch, K. Genz, et al. 2000. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287: 1056-1059   DOI   ScienceOn
31 Kim, M. O., S. P. Li, M. S. Park, and J. P. Hornung. 2003. Early fetal expression of GABA B1 and GABA B2 receptor mRNAs on the development of the rat central nervous system. Brain Res. Dev. Brain Res. 143: 47-55   DOI   ScienceOn
32 Jinhee, B., D. Park, Y. S. Lee, and D. Jeoung. 2008. Interleukin- 2 promotes angiogenesis by activation of Akt and increase of ROS. J. Microbiol. Biotechnol. 18: 377-382   과학기술학회마을
33 Adrain, C. and S. J. Martin. 2001. The mitochondrial apoptosome: A killer unleashed by the cytochrome c. Trends Biochem. Sci. 26: 390-397   DOI   ScienceOn
34 Clarren, S. K., E. C. Alvord Jr., S. M. Sumi, A. P. Streissguth, and D. W. Smith. 1978. Brain malformations related to prenatal exposure to ethanol. J. Pediatrics 92: 64-67   DOI
35 Miller, M. W. 1989. Effect of prenatal exposure to ethanol on the development of the cerebral cortex: II. Cell proliferation in the ventricular and subventricular zones of the rat. J. Comp. Neurol. 287: 326-338   DOI   ScienceOn
36 de la Monte, S. M. and J. R. Wand. 2002. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell. Mol. Life Sci. 59: 882-893   DOI   ScienceOn
37 Miller, M. W. 1993. Migration of cortical neurons is altered by gestational exposure to ethanol. Alcohol Clin. Exp. Res. 17: 304-314   DOI   ScienceOn
38 Kennedy, L. A. and M. J. Elliott. 1985. Cell proliferation in the embryonic mouse neocortex following acute maternal alcohol intoxication. Int. J. Dev. Neurosci. 3: 311-315   DOI   ScienceOn
39 Altman, J. and S. A. Bayer. 1995. Atlas of Prenatal Rat Brain Development, pp. 206-467. CRC Press, Florida, U.S.A
40 Hakem, R., A. Hakem, G. S. Duncan, J. T. Henderson, M. Woo, M. S. Soengas, et al. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339-352   DOI   ScienceOn
41 Kuan, C. 2000. Mechanisms of programmed cell death in the developing brain. Trends Neurosci. 23: 291-297   DOI   ScienceOn
42 Montoliu, C., S. Valles, J. Renau-Piqueras, and C. Guerri. 1994. Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: Effect of chronic alcohol consumption. J. Neurochem. 63: 1855-1862   DOI   ScienceOn
43 Riley, E. P., S. N. Mattson, E. R. Sowell, T. L. Jernigan, D. F. Sobel, and K. L. Jones. 1995. Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin. Exp. Res. 19: 1198-1202   DOI   ScienceOn
44 Snider, W. D. 1994. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77: 627-638   DOI   ScienceOn
45 Kuida, K., T. S. Zheng, S. Na, C. Kuan, D. Yang, H. Karasuyama, P. Rakic, and R. A. Flavell. 1996. Decreased apoptosis in the brain and premature lethality in CPP32- deficient mice. Nature 384: 368-372   DOI   ScienceOn