• Title/Summary/Keyword: brain computer interface (BCI)

Search Result 145, Processing Time 0.023 seconds

The development of a bluetooth based portable wireless EEG measurement device (블루투스 기반 휴대용 무선 EEG 측정시스템의 개발)

  • Lee, Dong-Hoon;Lee, Chung-Heon
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2010
  • Since the interest of a brain science research is increased recently, various devices using brain waves have been developed in the field of brain training game, education application and brain computer interface. In this paper, we have developed a portable EEG measurement and a bluetooth based wireless transmission device measuring brain waves from the frontal lob simply and conveniently. The low brain signals about 10~100${\mu}V$ was amplified into several volts and low pass, high pass and notch filter were designed for eliminating unwanted noise and 60Hz power noise. Also, PIC24F192 microcontroller has been used to convert analog brain signal into digital signal and transmit the signal into personal computer wirelessly. The sampling rate of 1KHz and bluetooth based wireless transmission with 38,400bps were used. The LabVIEW programing was used to receive and monitor the brain signals. The power spectrum of commercial biopac MP100 and that of a developed EEG system was compared for performance verification after the simulation signals of sine waves of $1{\mu}V$, 0~200Hz was inputed and processed by FFT transformation. As a result of comparison, the developed system showed good performance because frequency response of a developed system was similar to that of a commercial biopac MP100 inside the range of 30Hz specially.

EEG based Vowel Feature Extraction for Speech Recognition System using International Phonetic Alphabet (EEG기반 언어 인식 시스템을 위한 국제음성기호를 이용한 모음 특징 추출 연구)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The researchs using brain-computer interface, the new interface system which connect human to macine, have been maded to implement the user-assistance devices for control of wheelchairs or input the characters. In recent researches, there are several trials to implement the speech recognitions system based on the brain wave and attempt to silent communication. In this paper, we studied how to extract features of vowel based on international phonetic alphabet (IPA), as a foundation step for implementing of speech recognition system based on electroencephalogram (EEG). We conducted the 2 step experiments with three healthy male subjects, and first step was speaking imagery with single vowel and second step was imagery with successive two vowels. We selected 32 channels, which include frontal lobe related to thinking and temporal lobe related to speech function, among acquired 64 channels. Eigen value of the signal was used for feature vector and support vector machine (SVM) was used for classification. As a result of first step, we should use over than 10th order of feature vector to analyze the EEG signal of speech and if we used 11th order feature vector, the highest average classification rate was 95.63 % in classification between /a/ and /o/, the lowest average classification rate was 86.85 % with /a/ and /u/. In the second step of the experiments, we studied the difference of speech imaginary signals between single and successive two vowels.

EEG Analysis at the Moment of Yes/No Decision: Study of Spatio-Temporal Relations (긍/부정 선택 순간의 뇌파 변화 연구: 두 위치에서 측정된 뇌파의 상호관계 분석)

  • 김민준;신승철;송윤선;류창수;문성실;손진훈
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.26-31
    • /
    • 2001
  • 긍/부정 선택 실험에서 나타나는 뇌파 변화를 연구하였다. 서로 다른 위치에서 측정된 뇌파의 시공간적 상호관계를 정량화하는 변수로, 시간영역에서 계산하기 용이한 동기율(synchronization rate), 편향성(synchronization rate), 편향성(polarity), 상호상관(cross-correlation) 등의 변수를 도입하여, 긍/부정 선택 순간의 뇌파 변화를 살펴보았다. 좌우 전전두엽(Fp1, Fp2)에서 특정된 뇌파를 사용하여 계산한 동기율, 편향성의 평균과 요동폭, 상호상관 등은, 선택 순간 근처에서, 평상시에 뇌파와 통계적으로 유의미한 차이를 보였다.

  • PDF

Feature extraction obtained by two classes motor imagery tasks using symbolic transfer entropy (Symbolic Transfer Entropy 를 이용한 왼손/오른손 상상 움직임에서의 특징 추출)

  • Kang, Sung-Wook;Jun, Sung-Chan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.11a
    • /
    • pp.21-22
    • /
    • 2010
  • Brain-Computer Interface (BCI) 는 뇌 신호를 이용하여 생각으로 기계 및 컴퓨터를 제어 할 수 있는 기술이다. 뇌전도(Electroencephalography, EEG) 를 이용한 본 연구는 왼쪽/오른쪽 손 상상 움직임 실험에 대해서 특징 추출 (feature extraction)에 관�� 연구로 총 9명의 피험자로부터 얻어진 뇌 전도 데이터를 이용하여 전통적인 방법 (Common Spatial Pattern, CSP 및 Fisher Linear Discriminant, FLDA)을 이용해 구한 분류 정확도와 본 논문에서 사용 된 Symbolic transfer entropy (STE)을 통해 얻어진 특징에 대한 결과를 보여 준다. 본 연구를 통하여 STE를 통한 특징 추출 방법이 의미가 있다고 생각한다.

  • PDF

Development of an Environmental Control System using a Brain Computer Interface(BCI) for Severely Disabled People (생체신호를 이용한 중증 장애인용 환경제어장치 시스템 개발)

  • Kim, Da-Hey;An, Kwang-Ok;Kim, Jong-Bea
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2049-2050
    • /
    • 2011
  • 신체 움직임이 자유롭지 못한 중증 장애인의 경우 환경제어장치를 사용하면 일상생활 보조가 가능해지므로 활용 효과가 매우 크다. 그러나 현재 국내에서 개발되는 제품은 정상인을 위한 홈오토메이션이 대부분이고, 장애인을 위한 환경제어장치의 경우에도 입력 매체에 따라 대상 사용자가 제한되는 문제점이 있었다. 따라서 본 논문에서는 기존의 입력 장치 사용에 제한이 있었던 중증 장애인들도 사용가능하도록 1-채널 생체신호(뇌파 및 얼굴 근전도) 계측 시스템 및 환경제어장치를 개발하였다. 향후 개발된 시스템은 중증 장애인의 일상생활 체험관에 구축하고 장애인의 사용성 평가를 통해 그 효과를 입증하고자 한다.

  • PDF

The EEG classification using LVQ Neural Network (LVQ 신경망을 이용한 EEG 신호 분류)

  • Kim, Jae-Wook;Lee, Dong-Han;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.848-850
    • /
    • 2000
  • 본 논문에서는 신경회로망을 이용하여 On-Line상에서 EEG(Electroencephalogram) 신호를 분류하는 방법을 제안한다. EEG 신호란 인간의 두뇌활동에서 발생하는 전기적 신호로서 고도의 비선형과 시변 특성을 지니고 있어 정량적인 분석이 어려운 신호로 여겨진다. 이를 분석하기 위해 본 논문에서는 입력 벡터들을 서브클래스로 분류하는 경쟁 레이어와 서브클래스를 모아 정해진 클래스를 선택하는 선형 레이어로 이루어진 LVQ (Learning Vector Quantization) 신경망을 구성하고 On-Line 분석결과를 제시한다. 이러한 On-line 분석방법은 EEG 신호를 실시간으로 분석하여 컴퓨터를 인간의 생각만으로 제어될 수 있는 BCI(Brain Computer Interface)의 구현에 사용될 것이다.

  • PDF

Development of a Web Platform System for Worker Protection using EEG Emotion Classification (뇌파 기반 감정 분류를 활용한 작업자 보호를 위한 웹 플랫폼 시스템 개발)

  • Ssang-Hee Seo
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2023
  • As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.

A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP (서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구)

  • Park, Sang-Hoon;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1535-1543
    • /
    • 2015
  • The brain-computer interface obtains a user's electroencephalogram as a replacement communication unit for the disabled such that the user is able to control machines by simply thinking instead of using hands or feet. In this paper, we propose a feature extraction method based on a non-selected filter by SBCSP to classify motor imagery EEG. First, we divide frequencies (4~40 Hz) into 4-Hz units and apply CSP to each Unit. Second, we obtain the FLD score vector by combining FLD results. Finally, the FLD score vector is projected onto the optimal plane for classification using PCA. We use BCI Competition III dataset IVa, and Extracted features are used as input for LS-SVM. The classification accuracy of the proposed method was evaluated using $10{\times}10$ fold cross-validation. For subjects 'aa', 'al', 'av', 'aw', and 'ay', results were $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, and $93.50{\pm}0.69%$, respectively.

Motor Imagery based Brain-Computer Interface for Cerebellar Ataxia (소뇌 운동실조 이상 환자를 위한 운동상상 기반의 뇌-컴퓨터 인터페이스)

  • Choi, Young-Seok;Shin, Hyun-Chool;Ying, Sarah H.;Newman, Geoffrey I.;Thakor, Nitish
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.609-614
    • /
    • 2014
  • Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Recent studies have validated the age-old technique of employing motor imagery training (mental rehearsal of a movement) to boost motor performance in athletes, much as a champion downhill skier visualizes the course prior to embarking on a run. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a "backdoor" to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.

EEG-based Subjects' Response Time Detection for Brain-Computer-Interface (뇌-컴퓨터-인터페이스를 위한 EEG 기반의 피험자 반응시간 감지)

  • 신승철;류창수;송윤선;남승훈
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.837-850
    • /
    • 2002
  • In this paper, we propose an EEG-based response time prediction method during a yes/no cognitive decision task. In the experimental task, a subject goes through responding of visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining CT (cut time), ST (selection time), and RP (repeated period). Based on the assumption between ST and RT in the mental model, we predict subjects' response time by detection of selection time. To recognize the subjects' selection time ST, we extract 3 types of feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, ${\gamma}$ waves in 4 electrode pairs combined by spatial relationships. From the extracted features, we construct specific rules for each subject and meta rules including common factors in all subjects. Applying the ST detection rules to 8 subjects gives 83% success rates and also shows that the subjects will hit a key in 0.73 seconds after ST detected. To validate the detection rules and parameters, we test the rules for 2 subjects among 8 and discuss about the experimental results. We expect that the proposed detection method can be a basic technology for brain-computer-interface by combining with left/right hand movement or yes/no discrimination methods.