DOI QR코드

DOI QR Code

Motor Imagery based Brain-Computer Interface for Cerebellar Ataxia

소뇌 운동실조 이상 환자를 위한 운동상상 기반의 뇌-컴퓨터 인터페이스

  • Choi, Young-Seok (Department of Electronic Engineering, Gangneung-Wonju National University) ;
  • Shin, Hyun-Chool (School of Electronic Engineering, Soongsil University) ;
  • Ying, Sarah H. (Johns Hopkins University School of Medicine, Dept. Radiology) ;
  • Newman, Geoffrey I. (Johns Hopkins University School of Medicine, Dept. Biomedical Eng.) ;
  • Thakor, Nitish (Johns Hopkins University School of Medicine, Dept. Biomedical Eng.)
  • 최영석 (강릉원주대학교 전자공학과) ;
  • 신현출 (숭실대학교 정보통신공학과) ;
  • ;
  • ;
  • Received : 2014.09.14
  • Accepted : 2014.12.05
  • Published : 2014.12.25

Abstract

Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Recent studies have validated the age-old technique of employing motor imagery training (mental rehearsal of a movement) to boost motor performance in athletes, much as a champion downhill skier visualizes the course prior to embarking on a run. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a "backdoor" to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.

소뇌 운동실조는 점차 진행되는 신경퇴행질병이며 운동 조절을 위한 기능의 상실을 동반하기에 환자의 삶을 심각하게 저하시킨다. 소뇌 운동실조 환자는 운동제어 과정에서 부적절한 폐회로 소뇌 반응으로 인해 운동 명령이 제한된다. 본 논문에서는 최근 뇌-컴퓨터 인터페이스 기술을 이용하여 소뇌의 이상으로 인한 운동실조 환자들이 외부기기를 제어할 수 있도록 운동상상 기반의 뇌파의 특성을 분석하고 이를 이용한 뇌-컴퓨터 인터페이스 기법을 제안한다. 뇌파 기반의 뇌-컴퓨터 인터페이스의 효용성을 검증하기 위하여 소뇌 운동실조 환자와 정상인 그룹에서 운동상상에 따른 뮤밴드 파워를 조절하는 능력을 비교하였다. 이를 통하여 소뇌 운동실조 환자에의 뇌-컴퓨터 인터페이스의 가능성을 보여준다.

Keywords

References

  1. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller, "How many people are able to operate an EEG-based brain-computer interface (BCI)?", IEEE Trans Neural Systems and Rehabilitation Engineering, vol. 11, no. 2 pp. 145-147, June 2003. https://doi.org/10.1109/TNSRE.2003.814481
  2. D. J. McFarland, L. M. McCane, S. V. David, J. R. Wolpaw, "Spatial filter selection for EEG-based communication", Electroencephalography Clinical Neurophysiology, vol. 103, pp. 386-394, 1997. https://doi.org/10.1016/S0013-4694(97)00022-2
  3. F. R. Brown, "Degenerative cerebellar ataxias", Neurology, vol. 9, pp.799-805, 1959. https://doi.org/10.1212/WNL.9.12.799
  4. L. A. Liversedge, V. Emery, "Electroencephalographic changes in cerebellar degenerative lesions", Journal of Neurology and Neurosurgery Psychiatry, vol. 24, no. 4, pp. 326-330, 1961. https://doi.org/10.1136/jnnp.24.4.326
  5. L. Schols, C. Linnemann, C. Globas, "Electrophysiology in spinocerebellar ataxias: Spread of disease and characteristic findings", The cerebellum, pp. 198-203, 2008.
  6. M. Arai, H. Tanaka, R. D. Pascual-Marqui, K. Hirata, "Reduced brain electric activities of frontal lobe in cortical cerebellar atrophy", Clinical Neurophysiology, vol. 114, no. 4, pp.740-747, 2003. https://doi.org/10.1016/S1388-2457(02)00423-6
  7. N. L. Zasorin, R. W. Baloh, L. B. Myers, "Acetazolamide-responsive episodic ataxia syndrome", Neurology, vol. 33, pp. 1212-1214, 1983. https://doi.org/10.1212/WNL.33.9.1212
  8. J. S. Kwon, B. F. O'Donnell, G. V. Wallenstein, R. W. Greene, Y. Hirayasu, P. G. Nestor, M. E. Hasselmo, G. F. Potts, M. E. Shenton, R. W. McCarley, "Gamma frequency-range abnormalities to auditory stimulation in schizophrenia", Archives of General Psychiatry, vol. 56, no. 11, pp. 1001-1005, Nov. 1999. https://doi.org/10.1001/archpsyc.56.11.1001
  9. B. A. Clementz, M. A. Geyer, D. L., Braff, "P50 Suppression among schizophrenia and normal comparison subjects: A methodological analysis", Biological Psychiatry, vol. 41, no. 10, pp. 1035-1044, May 1997. https://doi.org/10.1016/S0006-3223(96)00208-9
  10. F. Battaglia, A. Quartarone, M. F. Ghilardia, R. Dattola,S. Bagnato, V. Rizzo, L. Morgante, P. Girlanda, "Unilateral cerebellar stroke disrupts movement preparation and motor imagery", Clinical Neurophysiology, vol. 117, no. 5, pp. 1009-1016, 2006. https://doi.org/10.1016/j.clinph.2006.01.008
  11. B. Gonzalez, M. Rodriquez, C. Ramirez, M. Sabate, "Disturbance of Motor Imagery After Cerebellar Stroke". Behavioral Neuroscience, vol. 119, no. 2, pp. 622-626 Apr. 2005. https://doi.org/10.1037/0735-7044.119.2.622
  12. S. H. Ying, S. I. Choi, S. L. Perlman, R. W. Baloh, D. S. Zee, A. W. Toga, "Pontine and cerebellar atrophy correlate with clinical disability in SCA2", Neurology, vol. 66, no. 3, pp. 424-42, Feb. 2006. https://doi.org/10.1212/01.wnl.0000196464.47508.00
  13. A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N. V. Thakor, "A brain-computer interface with vibrotactile biofeedback for haptic information." Journal of NeuroEngineering and Rehabilitation, vol. 4, no. 1, pp. 40, Oct. 2007. https://doi.org/10.1186/1743-0003-4-40
  14. R. Bos, S. deWaele, P. Broersen, "Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data", IEEE Transactions on Instrumentation and Measurement. vol. 51, no. 6, pp. 1289-1294, Dec. 2002. https://doi.org/10.1109/TIM.2002.808031