• Title/Summary/Keyword: brachytherapy phantom

Search Result 35, Processing Time 0.037 seconds

Intracavitary Ultrasound Hyperthermia Applicators for Gynecological Cancer

  • Lee, Rena J. .;Suh, Hyun-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.53-53
    • /
    • 2003
  • For evaluating the feasibility of treating recurrent lesions in the vaginal cuff and cervix by hyperthermia, ultrasound applicators were designed, constructed, and characterized. For the treatment A half-cylindrical transducer Cd=1cm, length=lcm) and cylindrical transducer (d=2.5cm, length= 1.5cm) were used to construct ovoid type and cylindrical applicators. For the ovoid type applicator, each element was operated at 1.5MHz and characterized by measuring transducer efficiency and acoustic power distribution. Thermocouple probes were used to measure the temperature rise in phantom. The element sizes used in this study were selected to be comparable for high dose rate brachytherapy colpostat applicator. Each element was powered separately to achieve a desired temperature pattern in a target. The acoustic output power as a function of applied electric power of the element 1 and 2 was linear over this 1 to 40 W range and efficiencies were 32.2${\pm}$3.4% and 46.2${\pm}$0.8%, respectively. The temperature measurements in phantom showed that 6$^{\circ}C$ temperature rise was achieved at 2 cm from the applicator surface. As a conclusion, the ability of the ultrasound colpostat applicator to be used for hyperthermia was demonstrated by measuring acoustic output power, ultrasound field distribution, and temperature rise in phantom. Based on the characteristics of this applicator, it has the potential to be useful for inducing hyperthermnia to the vaginal cuff in clinic.

  • PDF

Development of Phantom for Evaluate the Suitability of Ir-192 HDR Source with Brachytherapy Tools (근접치료용 하나로 생산 Ir-192 선원의 임상기기 적합성평가용 팬톰개발)

  • Shin, Kyo Chul;Choi, Sang Gyu;Kim, Ki Hwan;Son, Kwang Jae;Jeong, Dong Hyeok;Kim, Jeung Kee
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.171-175
    • /
    • 2013
  • Applicator of various kind of number ten kinds is used to raise from efficiency of brachytherapy to maximum. The compatibility of radiation source and applicator is very important subject for safety brachytherapy. Developed high dose rate brachytherapy source through Hanaro nuclear reactor in Korea Atomic Energy Research Institute and improve compatibility with using equipment in present. In this research, we wished to evaluate stability mechanical safety of radiation source and we developed phantom for evaluate several quality about Ir-192 sealed source that improve newly in Korea Atomic Energy Research Institute and is improved. The result for suitability of Ir-192 HDR source with brachytherapy tools that did normal operation in 2.2~2.7 cm extent about change of equal curvature and consider change of sudden curvature that did normal operation in radius 1.5~1.8 cm extent.

Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy (자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가)

  • Lee, Yun-Jong;Nho, Young-Chang;Lee, Jai-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.387-391
    • /
    • 2006
  • Computational and experimental dosimetry of Henschke applicator with respect to high dose rate brachytherapy using the MIRD phantom and a remote control afterloader were performed. A comparison of computational dosimetry was made between the simulated Monte Carlo dosimetry and GAMMADOT brachytherapy Planning system's dosimetry. Dose measurements was performed using ion chamber in a water phantom. Dose rates are calculated using Monte Carlo code MCNP4B and the GAMMADOT. Thecomputational models include the detailed geometry of Ir-192 source, tandem tube, and shielded ovoids for accurate estimation. And transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations. Point doses at ICRU bladder/rectal pointswhich have been recommened by ICRU 38 was assessed. Calculated and measured dose distribution data agreed within 4% each other. The shielding effect of ovoids leads to 19% and 20% dose reduction at bladder surface and rectal points.

The Use of Polymer Gel for the Visualization of 3-D Dose Distribution in Brachytherapy Using Magnetic Resonance Imaging (방사선 근접치료에 있어서 핵자기공명영상을 이용한 3차원 방사선 선량분포도의 가시화를 위한 polymer 젤의 이용)

  • 강해진;조삼주;정은기;강승희;오영택;전미선;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.207-215
    • /
    • 1998
  • There have been many radiation measurement methods so far among which film dosimetry, TLD, and ion chamber are the most frequently used methods. But this study describes a new radiation measurement method which uses polymer gel and magnetic resonance imaging(MRI). The objective of this study is to fabricate a polymer gel sensitive to radiation and to generate a dose to MRI contrast relationship, and to apply this results to the radiation measurement for the brachytherapy. To do this, 12 cm diameter cylindrical gel phantom was made, and the phantom was irradiated using the 30 mm diameter circular collimator which was used for radiosurgery. And this irradiated phantom was scanned with MRI. To find out the relationship between the radiation dose and the transversal relaxation time, an image processing software(IDL) was used. From this study it is found out that the radiation dose showed linear relationship to the transversal relaxation time of the gel up to 17 Gy($R^2$=0.993) and they had a different relationship above 17 Gy. The dose distributions were calculated using these results for the Ir-192 sources, one for the HDR afterloading system and the other for a 2 mCi seed source. And these calculated dose distributions were compared to the ones from the treatment planning computers. From this study the dose to the irradiated gel's transversal relaxation time relationship was examined, and this result was tried for the measurement of the brachytherapy.

  • PDF

Dose Evaluation of the Man Adjacent to an Implanted Patient During the Prostate Cancer Brachytherapy (전립선암의 근접치료 시 이식환자에 근접한 사람의 선량평가)

  • Park, Euntae;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • This study is fulfilled to evaluate the exposure dose nearby a patient during the brachytherapy of the prostate cancer treatment and to minimize the radiation exposure by evaluating the exposure dose of the person near the relevant implanted patient, technicians and gardians. The experiment method is used on the study is MCNPX that is stood on the basis monte-carlo method and implant the source to MIRD-type phantom in $^{192}Ir$, $^{125}I$, and $^{103}Pd$ in virtual space. For dose evaluations according to distance, the radiation dose on the patient near the corresponding implanted patient is evaluated by each distance of 30, 50, 100, 200 cm to anterior from the implanted patient. As a result, $^{192}Ir$ showed a higher dose than $^{125}I$ and $^{103}Pd$ in every distance.

Development of PC-based Radiation Therapy Planning System

  • Suh, Tae-Suk;P task group, R-T
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.121-122
    • /
    • 2002
  • The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.

  • PDF

The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom (근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Cho, Sam-Ju;Lee, Suk;Shin, Dong-Oh;Kwon, Soo-Il;Kim, Hun-Jung;Kim, Woo-Chul;K. Loh John-J.
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2005
  • Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.

Radiation Dose Calculation in the Surrounding Organs during Brachytherapy of Prostate Cancer (전립선암 근접시료시 주변 장기 선량 평가)

  • Kim, Jung-Hoon;Lim, Chang-Seon;Whang, Joo-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.172-177
    • /
    • 2008
  • As a part of estimating quantitative radiation treatment doses, we produced a mathematical phantom based on the standard Korean male. Then, with the prostate as the source organ, we calculated the absorbed dose in the prostate and surrounding organs forecasted to occur during brachytherapy for prostate cancer. To simulate the procedure, we selected $^{25}I$ and $^{103}Pd$ useful in brachytherapy of the prostate as the radionucleids and made an assumption that 1 Ci of initial radioactivity is administered. As a result, we found that the prostate, as the source organ, indicated 101 Gy/Ci and 7.24 Gy/Ci, respectively, in case of $^{125}I$ and $^{103}Pd$. With the exception of the prostate, organs with high absorbed doses were found to be in the order of the penis and scrotum, sigmoid colon, testicles and the urinary bladder, which are relatively close to the prostate.

  • PDF

Evaluation of Dosimetric Effect and Treatment Time by Plan Parameters for Endobronchial Brachytherapy

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Kang, SungHee;Cho, Jin Dong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2017
  • This study aims to analyze dose distribution and treatment time of endobronchial brachytherapy (EBBT) by changing the position step size of the dwell position. A solid water phantom and an intraluminal catheter were used in the treatment plan. The treatment plans were generated for 3, 5, 7, and 10 cm treatment lengths, respectively. For each treatment length, the source position step sizes were set as 2.5, 5, and 10 mm. Three reference points were set 1 cm away from the central axis of the catheter, along the axis, for uniform dose distribution. Volumetric dose distribution was calculated to evaluate the dosimetric effect. The total radiation delivery time and total dwell time were estimated for treatment efficiency, which were increased with position step sizes. At half-life time, the differences between the position step sizes in the total radiation delivery time were 18.1, 15.4, 18.0, and 24.0 s for 3, 5, 7, and 10 cm treatment lengths, respectively. The dose distributions were more homogenous by increasing the position step sizes. The dose difference of the reference point was less than 10%. In brachytherapy, this difference can be negligible. For EBBT, the treatment time is the key factor while considering the patient status. To reduce the total treatment time, EBBT can be performed with 2.5 mm position step size.