• Title/Summary/Keyword: box girder section

Search Result 141, Processing Time 0.028 seconds

A study of decomposition of applied eccentric load for multi-cell trapezoidal box girders (편심하중이 작용하는 제형 다실박스거더에서의 거동분리연구)

  • Kim Seung Jun;Han Keum Ho;Park Nam hoi;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.229-234
    • /
    • 2005
  • Thin-walled multicell box girders subjected to an eccentric load can he produced the three global behaviors of flexure, torsion, and distortion. Specially in railway bridges subjected to much eccentric load, it is quite important to evaluate influences of torsion and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces. we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is reserched by Park, Nam- Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about trapezoidal multi-cell section is insufficient. So, this paper deals with multi-cell trapezoidal box girders. An expanded method, which is based on the force decomposition method for a single cell box girder given by Nakai and Yoo, is developed herein to decompose eccentric load Pinto flexural, torsional, and distortional forces. Derive formulas by decomposition of eccentric load is verified by 3D shell-modelling numerical analysis.

  • PDF

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Analytical Research on Dynamic Behavior of Steel Composite Lower Railway Bridge (강합성 하로 철도교의 동적거동에 대한 해석적 연구)

  • Jeong, Young-Do;Koh, Hyo-In;Kang, Yun-Suk;Eom, Gi-Ha;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • The existing middle-long span railway bridge has been mainly applied to steel box girder bridges. However, the steel box girder bridges have disadvantages in securing the space under the bridge, and the main girder is made of a thin plate box shape, resulting in a ringing noise due to the vibration. Many complaints about noise have been raised. For this reason, there is a need for the development of long railway bridges that can replace steel box girder bridges. In this paper, the characteristics of the steel composite railway bridge currently developed were introduced and a time history analysis was conducted using MIDAS Civil reflecting the speed of KTX load for 40m and 50m bridges. In addition, from the analysis results, the dynamic behavior of target bridges were verified and it was examined whether they meet the dynamic performance criteria proposed in the railway design standards. As a result, all of the bridges under review satisfied the dynamic safety criteria, however, in case of 40m of span, the vertical acceleration value was very large. In order to solve this problem, authors proposed the improvement plan and corrected the cross section to confirm that the vertical acceleration decreased.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Design of Dang-San Steel Railway Bridge (당산철교의 설계)

  • 유동호;김선일
    • Computational Structural Engineering
    • /
    • v.12 no.4
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF

Optimum Design of Modular FRP Box Member to Bending Moment (휨을 받는 조립형 FRP 박스부재의 최적단면검토)

  • Kwak, Kae-Hwan;Kim, Kyung-Suk;Kim, Ho-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • Fiber Reinforced Polymer (FRP)s have various advantages for construction material in that they are noncorrosive and very strong. FRPs are economical and effective for management and maintenance when applied to footbridge, beam or deck of the bridge, girder, and marine structure. For safety, optimal design for standard modulation of the cross section is necessary. Conditions of optimum are possibilities of domestic production, modular assembly, and structure materials cast in compressed area.

Development of Longitudinal Ultimate and Residual Strength Estimation System for Hull Girder Structure (선각 거어더의 최종 몇 잔류종강도 추정 시스템 재발)

  • J.H. Ham;U.N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.107-115
    • /
    • 1995
  • A simple estimation system of ultimate and residual strength for ship structures is developed on the Open-Window system of SUN4 engineering workstation. System development consists of three stages. Firstly, various ultimate longitudinal strength estimation methods are investigated and some rational estimation methods are adopted based on the parametric comparison of various hulls or box girders. Secondly, these selected and newly formulated methods are linked with elastic & perfectly plastic section modulus calculation procedure. Therefore, the longitudinal hull girder strength can be calculated in the intact and damaged conditions due to the grounding or collision of hull structure. Finally, an exclusive system is developed such that whole procedures are proceeded under the window management system using mouse button and elastic and perfect plastic stress conditions. Also longitudinal members are plotted automatically under three dimensional graphic circumstances. These established program is tested for various actual ships, and some examples are illustrated.

  • PDF

Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings (탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가)

  • Kim, Kyungsik;Lee, Heejeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • Horizontally curved bridges are subjected to torsional loads by their vertical dead loads only as well as eccentric loads, which cause negative reactions at supports. In this paper, effects of bridge curvature on vertical reactions at supports are investigated for 48.8 m length simple span steel box girder bridges with elastomeric bearings by varying curvature angle from 0.49 to 1.35 rad. In order to expect magnitude and direction of reactions including possibility of negative reactions, reaction evaluation equations have been analytically developed by separating a superstructure of curved bridge into independent components. Concrete slabs and bottom flanges in steel box section are assumed geometrical annular sectors in area dimension, and top flanges and webs that have very narrow projected areas are assumed geometrical arcs in line dimension. Proposed equations have relatively simple forms and prediction values are on very good agreement with those from finite element analyses by difference of 1% order.

Ultimate Transverse Bending Strength Analysis of a SWATH Ship (SWATH선의 최종 횡굽힘강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.