• Title/Summary/Keyword: box girder bridges

Search Result 332, Processing Time 0.035 seconds

Temperature Analysis of PSC Box-girder Bridges Using Inverse Thermal Analysis Program (온도분포 역해석 프로그램을 이용한 PSC 박스거더 교량 단면의 온도 분포 해석)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Myung-Kue
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.95-101
    • /
    • 2006
  • It is well known that the thermal load in PSC(prestressed concrete) box-girder bridge is the principal cause of detrimental crack. The longitudinal stress caused by the lateral stress from the temperature gradient in slab of PSC box-girder bridge has a considerable influence on the durability and economy of bridge structures. As the basic study for the rational consideration of thermal load and the derivation of design guide, the inverse thermal analysis program for PSC box-girder bridges using field measurement data is developed. In this paper, thermal analyses are performed using field monitoring data for the sample PSC box-girder bridge. It is proposed that the link between monitoring program and the inverse analysis program is available.

Lateral ultimate behavior of prestressed concrete box girder bridges (프리스트레스트 콘크리트 박스거더의 횡방향 극한거동 실험 연구)

  • Oh, Byung-Hwan;Choi, Young-Cheol;Lee, Seung-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.

  • PDF

Optimization for PSC Box Girder Bridges Using Design Sensitivity Analysis (설계 민감도 해석을 이용한 PSC 박스거더교의 최적설계)

  • 조선규;조효남;민대홍;이광민;김환기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.205-210
    • /
    • 2000
  • An optimum design algorithm of PSC box girder bridges using design sensitivity analysis is proposed in this paper. For the efficiency of the proposed algorithm, approximated reanalysis techniques using design sensitivity analysis are introduced. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses is proposed. A design sensitivity analysis of structural response is executed by automatic differentiation(AD). The efficiency and robustness of the proposed algorithm, compared with conventional algorithm, is successfully demonstrated in the numerical example.

  • PDF

Reliability-Based Safety Assessment of Precast Segmental Prestressed Concrete Box Girder Bridges (신뢰성에 기초한 프리캐스트 세그멘탈 PC박스거더교량의 안전도분석평가)

  • 조효남;지광습
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.35-42
    • /
    • 1995
  • One of the main objectives of this study is to propose a realistic limit state model for reliability-based safety assessment of precast segmental prestressed concrete box girder bridges, considering 1) combined effects of bending, shear and torsional forces, and 2) the difference between transverse reinforcments of box girder. A improved limit state model is derived from a modified interaction equation compared with the Bruno's equation. A Drectional sampling algorithm is used for reliability analysis of the proposed model.

  • PDF

Analysis of Dynamic Responses for Steel Box Girder and I-girder Bridges under Train Loads (강합성 상자형교 및 소수주형 I형 거더교의 철도차량에 대한 동특성 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Ahn, Gi-Chul;Kim, Ok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.954-959
    • /
    • 2011
  • The intensity of train load in the railway bridges is relatively large and continues to repeat. Also, the speed of vehicles is very fast. For these reasons, analyses for dynamic response under train load are necessary in the railway bridges. In other words, the dynamic characteristics of steel-composite bridges under train loads should be investigated considering effects of dynamic responses such as vibrations, repeated displacements and acceleration of bridge members. Therefore, in this study, static and dynamic analyses for the steel box girder bridges and I-girder bridges are carried out. Based on analyses results, we investigated and compared dynamic response considering the impact factors of domestic and foreign design specifications.

  • PDF

The nose-up effect in twin-box bridge deck flutter: Experimental observations and theoretical model

  • Ronne, Maja;Larsen, Allan;Walther, Jens H.
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.293-308
    • /
    • 2021
  • For the past three decades a significant amount of research has been conducted on bridge flutter. Wind tunnel tests for a 2000 m class twin-box suspension bridge have revealed that a twin-box deck carrying 4 m tall 50% open area ratio wind screens at the deck edges achieved higher critical wind speeds for onset of flutter than a similar deck without wind screens. A result at odds with the well-known behavior for the mono-box deck. The wind tunnel tests also revealed that the critical flutter wind speed increased if the bridge deck assumed a nose-up twist relative to horizontal when exposed to high wind speeds - a phenomenon termed the "nose-up" effect. Static wind tunnel tests of this twin-box cross section revealed a positive moment coefficient at 0° angle of attack as well as a positive moment slope, ensuring that the elastically supported deck would always meet the mean wind flow at ever increasing mean angles of attack for increasing wind speeds. The aerodynamic action of the wind screens on the twin-box bridge girder is believed to create the observed nose-up aerodynamic moment at 0° angle of attack. The present paper reviews the findings of the wind tunnel tests with a view to gain physical insight into the "nose-up" effect and to establish a theoretical model based on numerical simulations allowing flutter predictions for the twin-box bridge girder.

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

Optimum Design of PSC Box Girder Bridge considering the Influence of Unequal Span Length Division, Load Factor, and Variable Girder Depth (부등 경간 비율, 하중계수 및 변단면의 영향을 고려한 PSC 박스 거더교의 최적설계)

  • 박문호;김기욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2004
  • This research automatically designed psc-box girder bridges by using an optimum design program and applied the results to the various types of bridges to verify if common facts used in steel bridges or concrete bridges can be applied to PSC bridges. Namely, it investigated appropriate unequal span length division by comparing with bridge of unequal and equal span length division, and verified the influence of the load factors which are changed by time or specification applying the results to various types of bridge. and it applied reinforced concrete bridge and steel bridge's variable girder depth which is slender and effective to save material costs to PSC box girder bridges. Technical solution of optimum design program used SUMT procedure, and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used for searching design points and a gradient's approximate method was used to reduce the design time.

Optimization of Steel Box Girder Highway Bridges Using Discrete Variables (이산형변수를 고려한 강박스거더교의 단면최적화)

  • 김상효;이상호;이민구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.195-202
    • /
    • 1995
  • In this study, the optimization program is developed to provide preliminary designs of steel-box girder bridges with minimum cost. The advantages of steel-box girder deck, when comparing with other girder types, are higher torsional rigidity and better resistance against corrosion. To achieve more rational design, systematic design procedure is required, by which the design constraints on steel-box girder are satisfied and the design variables with minimum cost are obtained. In the Proposed optmum design Process, the design variables are forced to be selected from the available discrete value set. The efficiency of the developed program has been verified by companing with previous designed sections and the resulting optimum cost with discrete variables has been compared with those of continuous variables.

  • PDF

Effect of beam slope on the static aerodynamic response of edge-girder bridge-deck

  • Lee, Hoyeop;Moon, Jiho;Chun, Nakhyun;Lee, Hak-eun
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.157-176
    • /
    • 2017
  • 2-edge box girder bridges have been widely used in civil engineering practice. However, these bridges show weakness in aerodynamic stability. To overcome this weakness, additional attachments, such as fairing and flap, are usually used. These additional attachments can increase the cost and decrease the constructability. Some previous researchers suggested an aerodynamically stabilized 2-edge box girder section, giving a slope to the edge box instead of installing additional attachments. However, their studies are limited to only dynamic stability, even though static aerodynamic coefficients are as important as dynamic stability. In this study, focus was given to the evaluation of static aerodynamic response for a stabilized 2-edge box girder section. For this, the slopes of the edge box were varied from $0^{\circ}$ to $17^{\circ}$ and static coefficients were obtained through a series of wind tunnel tests. The results were then compared with those from computational fluid dynamics (CFD) analysis. From the results, it was found that the drag coefficients generally decreased with the increasing box slope angle, except for the specific box slope range. This range of box slope varied depending on the B/H ratio, and this should be avoided for the practical design of such a bridge, since it results in poor static aerodynamic response.