• Title/Summary/Keyword: boundary-layer stress

Search Result 249, Processing Time 0.026 seconds

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

An experimental study on the transitional boundary layer developing on NACA0012 airfoil (NACA0012 날개 위의 천이 경계층에 관한 실험적 연구)

  • Gang, Sin-Hyeong;Sin, Sang-Cheol;Lee, Hyeon-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1689-1699
    • /
    • 1996
  • A study on the transitional boundary layer with arbitrary pressure gradient under various upstream conditions is very important for engineering applications like the performance predictions of the turbomachineries under various and strong disturbances. Experimental data on the transitional boundary layer for real cascades of the turbomachinery are rare because of difficulties in boundary layer experiments. Flow on NACA0012 airfoil is more similar to the real case than that on the flat plate with which many researches are done. The data of the transitional flow on the airfoil could be used to verify or to develop a turbulence model for numerical simulations. The experiment was performed with two cases of Reynolds number at a=0$^{0}$ and one case of Reynolds number at a=5$^{0}$ . The measured data are the transition length and the wall shear stresses. These two characteristic values are measured within 25%~90% of the airfoil chord by Computation Preston tube Method(CPM) proposed by Nitsche et al.(1983). At a=0$^{0}$ , transition occured at 70% and 55% of chord length when R $e_{c}$=6*10$^{5}$ and 8* 10$^{5}$ , respectively. It started when R {\theta}=500 regardless of R $e_{c}$, and ended when R {\theta}=750, and 850 respectively. The transition length was 15~20% of the chord length. At a=5$^{0}$ (R $e_{c}$=6*10$^{5}$ ), boundary layer on the pressure side does not undergo transition, but on the suction side transition occured at .chi.$_{c}$/c=0.16 and ended at .chi.$_{c}$/c=0.22.c//c=0.22./c=0.22.c//c=0.22.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

Electro-Mechanical Analysis of Interfacial Cracks in a Piezoelectric Layer Bonded to Dissimilar Elastic Layers (탄성층 사이에 접합된 압전재료의 계면균열에 대한 전기-기계적 해석)

  • 정경문;김인옥;김지숙;범현규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.120-128
    • /
    • 2002
  • Interfacial cracks in a piezoelectric layer bonded to dissimilar elastic layers under the combined anti-plane mechanical shear and in-plane electrical leadings are considered. By using Fourier cosine transform, the mixed boundary value problem is reduced to a singular integral equation which is solved numerically to determine the stress intensity factors. Numerical results for the effects of the material properties and layer geometries on the stress intensity factors are obtained.

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Propagation of love-type wave in a temperature dependent crustal Layer

  • Kakar, Rajneesh;Kakar, Shikha;Narang, Rajeev Kumar
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2017
  • The present study deals with the propagation of Love wave (a type of surface wave) in crustal layer having temperature dependent inhomogeneity. It is assumed that the inhomogeneity in the crustal layer arises due to linear temperature variation in rigidity and density. The upper boundary of the crustal layer is traction free. Numerical results for Love wave are discussed by plotting analytical curves between phase velocity against wave number and stress against depth in the presence of inhomogeneity and temperature parameters. The effects boundary condition on the Love wave propagation in the crustal layer is also analyzed. The results presented in this study would be useful for seismologists and geologists.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

A Similarity Solution of the Characteristics of Micropolar Fluid Flow in the Vicinity of a Wedge (상사해법을 이용한 쐐기형 물체 주위의 미세 극성유체 유동 특성에 관한 연구)

  • Kim, Youn J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.969-977
    • /
    • 1999
  • A similarity solution of a steady laminar flow of micropolar fluids past wedges has been studied. The similarity variables found by Falkner and Skan are employed to reduce the streamwise-dependence in the coupled nonlinear boundary layer equations. Numerical solutions of the equations are then obtained using the fourth-order Runge-Kutta method and the distribution of velocity, micro-rotation, shear and couple stress across the boundary layer are obtained. These results are compared with the corresponding flow problems for Newtonian fluid past wedges with various wedge angles. Numerical results show that, keeping ${\beta}$ constant, the skin friction coefficient is lower for a micropolar fluid, as compared to a Newtonian fluid. For the case of constant material parameter K, however, the velocity distribution for a micropolar fluid is higher than that of a Newtonian fluid.