• Title/Summary/Keyword: boundary stability

Search Result 841, Processing Time 0.036 seconds

Transition Prediction of Flat-plate and Cone Boundary Layers in Supersonic Region Using $e^N$-Method ($e^N$-Method를 이용한 초음속 영역에서의 평판 및 원뿔형 경계층의 천이 예측)

  • Jang, Je-Sun;Park, Seung-O
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.235-238
    • /
    • 2006
  • This paper is about the code that realizes the $e^N$-Method for boundary-layer transition prediction. The $e^N$-Method based on the linear stability theory is applied to predicting boundary-layer transition frequently. This paper deals with the construction of code, stability analysis and the calculation of N-factor. The results of transition prediction using the $e^N$-Method for flat plate/cone compressible boundary-layers are presented.

  • PDF

Transition Prediction of Boundary Layers over Airfoils based on Boundary Layer Stability Theory (경계층 안정성 이론을 바탕으로 한 익형 위 경계층의 천이지점 예측)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.403-413
    • /
    • 2010
  • Transition location of boundary layers over airfoils is predicted by using PSE(Parabolized Stability Equations) and $e^N$-method. Growth rates of disturbances are obtained from the PSE analysis and the N-factor curves are calculated by integrating the growth rates. The computational code developed in the present study is validated by comparing the computed results with the well known data for the cases of flat plate boundary layers and airfoils. Predictions of transition location are made for the boundary layers over NACA0012, NLF(1)-0414F, and NLF(1)-0416 airfoil. Predicted transition locations are found to be in good agreement with the experimental data.

Nonlinear Stability Analysis of Boundary Layers by using Nonlinear Parabolized Stabiltiy Equations (Nonlinear PSE를 이용한 경계층의 비선형 안정성 해석)

  • Park, Dong-Hun;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.805-815
    • /
    • 2011
  • Nonlinear Parabolized Stability Equations(NSPE) can be effectively used to study more throughly the transition process. NPSE can efficiently analyze the stability of a nonlinear region in transition process with low computational cost compared to Direct Numerical Simulation(DNS). In this study, NPSE in general coordinate system is formulated and a computer code to solve numerically the equations is developed. Benchmark problems for incompressible and compressible boundary layers over a flat plate are analyzed to validate the present code. It is confirmed that the NPSE methodology constructed in this study is an efficient and effective tool for nonlinear stability analysis.

Stability Analysis of Stiffened Thin Plates Using Energy Method (에너지법을 이용한 보강된 박판의 안정성해석)

  • KIM, Moon Young;MIN, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.55-65
    • /
    • 1996
  • For stability analysis of stifened rectangular thin plates with various boundary conditions, Ritz method is presented. An energy method is especially useful in those cases where a rigorous solution of the diferential eqution is unknown or where we have a plate reinforced by stiffeners and it is required to find only an approximate value of the critical load. The strain energy due to the plate bending and the work done by the in-plane forces are taken into account in order to apply the principle of the minimum potential energy. The buckling mode shapes of flexural beams with various boundary conditions are derived, and shape functions consistent with the given boundary conditions in the two orthogonal directions are chosen from those displacement functions of beams. The matrix equations for stability of stiffened rectangular thin plates are determined from the stationary condition of the total potential energy. Numerical example for stability behaviors of horizontally and vertically stiffened plates subjected to uniform compression, bending and shear loadings are presented and the obtained results are compared with other researchers' results.

  • PDF

A Study on the Numerical Stability and Accuracy of Lattice Boltzmann Method with Non-equilibrium first order extrapolation boundary condition (비평형 1 차 외삽 경계조건을 이용한 격자 볼츠만 법의 수치적 안정성 및 정확도에 관한 연구)

  • Jeong, Hae-Kwon;Kim, Las-Sung;Lee, Hyun-Goo;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2684-2689
    • /
    • 2007
  • Non-equilibrium first order extrapolation boundary condition proposed by Guo et $al.^{(9)}$ proposed has a good application for complex geometries, a second order accuracy and a treatment on non-slip wall boundary condition easily. However it has a lack of the numerical stability from high Reynolds number. Guo et $al.^{(9)}$ substituted the density value of adjacent nodes for the density of boundary nodes. This procedure causes the numerical instability on the boundary. In this paper, we derived a procedure of density extrapolation and compared to previous results.

  • PDF

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

Critical Short Circuit Ratio Analysis on DFIG Wind Farm with Vector Power Control and Synchronized Control

  • Hong, Min;Xin, Huanhai;Liu, Weidong;Xu, Qian;Zheng, Taiying;Gan, Deqiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.320-328
    • /
    • 2016
  • The introduction of renewable energy sources into the AC grid can change and weaken the strength of the grid, which will in turn affect the stability and robustness of the doubly-fed induction generator (DFIG) wind farm. When integrated with weak grids, the DFIG wind turbine with vector power control often suffers from poor performance and robustness, while the DFIG wind turbine with synchronized control provides better stability. This paper investigates the critical short circuit ratios of DFIG wind turbine with vector power control and synchronized control, to analyze the stability boundary of the DFIG wind turbine. Frequency domain methods based on sensitivity and complementary sensitivity of transfer matrix are used to investigate the stability boundary conditions. The critical capacity of DFIG wind farm with conventional vector power control at a certain point of common coupling (PCC) is obtained and is further increased by employing synchronized control properly. The stability boundary is validated by electromagnetic transient simulation of an offshore wind farm connected to a real regional grid.

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

EXISTENCE, UNIQUENESS AND HYERS-ULAM-RASSIAS STABILITY OF IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH BOUNDARY CONDITION

  • MALAR, K.;GOWRISANKAR, C.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1089-1103
    • /
    • 2022
  • This paper focuses on the existence and uniqueness outcome for fractional integro-differential equation (FIDE) among impulsive edge condition and Hyers-Ulam-Rassias Stability (HURS) by using fractional calculus and some fixed point theorem in some weak conditions. The outcome procured in this paper upgrade and perpetuate some studied solutions.