• Title/Summary/Keyword: boundary layer flow

Search Result 1,006, Processing Time 0.036 seconds

A Dinamic Consideration on the Temperature Distribution in the East Coast of Korea in August (8월의 한국동안에서의 수온분포에 관한 역학적 고찰)

  • Seung, Young Ho
    • 한국해양학회지
    • /
    • v.9 no.2
    • /
    • pp.52-58
    • /
    • 1974
  • The water temperature distribution and the water movement closely related with it, in the east side of Korea, was condidered. Special emphasis was paid on the low temperature phenomenon near Ulgi. It was known from the temperature distribution in the east side of Korea that the Tsushima current continues to flow northward at the surface near Sokcho. Also the influence of the cold water extends from the North to the South with increasing depth. The formation of the cold core near Ulgi was explained as due mainly to the existence of the boundary layer near the surface, and partly to the effect of the wind. This inclination of the boundary layer has the value of about 3.0m/Km, and the lower cold current velocity computed using this value lies in the range of those observed by Nishida(1926, 1927). The upwelling velocity was computed approximately as 1.4 10$\^$-3/ cm/sec, and the maximum distance to which the boundarylayer can rise or fall from it's equilibrium position was considered as below 10m.

  • PDF

An evaluation of wall functions for RANS computation of turbulent flows (난류 흐름의 RANS 수치모의를 위한 벽함수 성능 평가)

  • Yoo, Donggeun;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • The most common approach for computing engineering flow problems at high Reynolds number is still the Reynolds-averaged Navier-Stokes (RANS) computations based on turbulence models with wall functions. The recently developed generalized wall functions blending between the wall-limiting viscous and the outer logarithmic relations ensure a smooth transition of flow quantities across two regions. The performances and convergence properties of widely used turbulence models with wall functions that are applicable for turbulence kinetic energy (TKE), turbulent and specific dissipation rates, and eddy viscosity are presented through a series of near wall flow simulations. The present results show that RNG k-𝜖 model should be carefully applied with small tolerance to get the stable solution when the first grid lies in the buffer layer. The standard k-𝜖 and RNG k-𝜖 models are not sensitive to the selection of wall functions for both TKE and eddy viscosity, while the k-ω SST model should be applied together with kL-wall function for TKE and nutUB-wall functions for eddy viscosity to ensure accurate and stable boundary conditions. The applications to a backward-facing step flow at Re=155,000 reveal that the reattachment length is reasonably well predicted on appropriately refined mesh by all turbulence models, except the standard k-𝜖 model which about 13% underestimates the reattachment length regardless of the grid refinement.

The Estimation of Shear Stress in Uniform and Nonuniform Flow by the Entropy Concept (엔트로피 개념을 이용한 개수로에서 등류 및 부등류 흐름의 전단응력 산정)

  • Choo, Yeon Moon;Choo, Tai Ho;Yang, Da Un;Kim, Joong Hoon
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.202-210
    • /
    • 2017
  • Shear stress is one of the most important mechanical factors used in various fields and is important for the design of artificial channels. Current shear stresses have been used in the past, but there are factors that are difficult to actually measure or calculate, such as bed shear stress and energy slope in the equation used. In particular, the energy slope is a very difficult factor to estimate, and it is difficult to estimate the slope and flow velocity of the boundary layer although the energy slope can be used to obtain the shear stress distribution. In addition, the bed shear stress among the shear stress distribution is very difficult to measure directly, and the research is somewhat slower than the velocity. In this study, we have studied the simple calculation of the average flow velocity and the shear stress distribution using entropy M without reflecting the energy gradient, and we used existing laboratory data to demonstrate the utility of the applied equation. The stress distribution in the graphs was comparatively analyzed. In the case of the uniform flow and the non-uniform flow, the correlation coefficient was almost identical to 0.930-0.998.

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.

Vertical Ozone Distribution over Seoul: Ozonesonde Measurements During June 6~9, 2003 (서울지역 연직 오존 분포: 2003년 6월 6~9일 오존존데 관측)

  • Hwang, Mi-Kyoung;Kim, Yoo-Keun;Oh, In-Bo;Song, Sang-Keun;Lim, Yun-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.196-205
    • /
    • 2008
  • Variability in vertical ozone and meteorological profiles was measured by 2Z electrochemical concentration cells (ECC) ozonesonde at Bangyi in Seoul ($37.52^{\circ}N$, $127.13^{\circ}E$) during June $6{\sim}9$, 2003 in odor to identify the vertical distribution of ozone and its relationship with the lower-atmospheric structure resulted in the high ozone concentrations near the surface. The eight profiles obtained in the early morning and the late afternoon during the study period clearly showed that the substantial change of ozone concentrations in lower atmosphere(${\sim}5\;km$), indicating that it is tightly coupled to the variation of the planetary boundary layer (PBL) structure as well as the background synoptic flow. All profiles observed early in the morning showed very low ozone concentrations near the surface with strong vertical gradients in the nocturnal stable boundary layer due to the photochemical ozone loss caused by surface NO titration under very weak vertical mixing. On the other hand, relatively uniform ozone profiles in the developed mixing layer and the ozone peaks in the upper PBL, were observed in the late afternoon. It was noted that a significant increase in ozone concentrations in the lower atmosphere occurred with the corresponding decrease of the mixing height in the late afternoon on June 8. Ozone in upper layer did not vertically vary much compared to that in PBL but changed significantly on June 6 that was closely associated with the variation of synoptic flows. Interestingly, heavily polluted ozone layers aloft (a maximum value of 115 ppb around 2 km) were formed early in the morning on 6 through 7 June under dominant westerly synoptic flows. This indicates the effects of the transport of pollutants on regional scale and consequently can give a rise to increase the surface ozone concentration by downward mixing processes enhanced in the afternoon.

Numerical Analysis of Synchronous Edge Wave Known as the Driving Mechanism of Beach Cusp (Beach Cusp 생성기작으로 기능하는 Synchronous Edge Wave 수치해석)

  • Lee, Hyung Jae;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2019
  • In this study, we carried out the 3D numerical simulation to investigate the hydraulic characteristics of Synchronous Edge wave known as the driving mechanism of beach cusp using the Tool Box called the ihFoam that has its roots on the OpenFoam. As a wave driver, RANS (Reynolds Averaged Navier-Stokes equation) and mass conservation equation are used. In doing so, we materialized short-crested waves known as the prerequisite for the formation of Synchronous Edge waves by generating two obliquely colliding Cnoidal waves. Numerical results show that as can be expected, flow velocity along the cross section where waves are focused are simulated to be much faster than the one along the cross section where waves are diverged. It is also shown that along the cross section where waves are focused, up-rush is moving much faster than its associated back-wash, but a duration period of up-rush is shortened, which complies the typical characteristics of nonlinear waves. On the other hand, due to the water-merging effect triggered by the redirected flow toward wave-diverging area at the pinacle of run-up, along the cross section where waves are diverged, offshore-ward velocity is larger than shore-ward velocity at the vicinity of shore-line, while at the very middle of shoaling process, the asymmetry of flow velocity leaned toward the shore is noticeably weakened. Considering that these flow characteristics can be found without exception in Synchronous Edge waves, the numerical simulation can be regarded to be successfully implemented. In doing so, new insight about how the boundary layer streaming occur are also developed.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.