• Title/Summary/Keyword: boundary layer development

Search Result 222, Processing Time 0.028 seconds

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

An Advanced Study on the Development of Marine Lifting Devices Enhanced by the Blowing Techniques

  • Ahn Haeseong;Yoo Jaehoon;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2004
  • High lifting devices used for control purposes have received much attention in the marine field. Hydrofoils for supporting the hull, roll stabilizer fins for developing the motion damping performance, rudders for maneuverability are the well-known devices. In the present study, the ability of the rudder with flap to produce high lift was analyzed. The boundary layer control, one of the flow control techniques, was adopted. Especially, to build the blown flap, a typical and representative type of a boundary layer control, a flapped rudder was designed and manufactured so that it could eject the water jet from the gap between the main foil and the flap to the flap surface tangentially. And it was tested in the towing tank. Simultaneously, to know the information about the 2-dimensional flow field, a fin model with similar characteristics as the rudder model applicable for the motion control was made and tested in the cavitation tunnel. In addition, local flow measurements were carried out to obtain physical information, for example, a surface pressure measurement and flow visualization around the flap. And CFD simulation was used to obtain information difficult to collect from the experiment about the 2-dimensional flow.

Variation of Current by the Building of Artificial Upwelling Structure(II) (인공용승구조물 설치에 의한 유동변화(II))

  • Hwang, Suk-Bum;Kim, Dong-Sun;Bae, Sang-Wan;Kheawwongjan, Apitha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.9-14
    • /
    • 2007
  • To illusσ'ate the variation of current around artificial upwelling structure which is located in the South sea of Korea, current measurements using ADCP (Acoustic Doppler Current Profiler) during neap and spring tides were carried out on 27th July(summer), 14th October and 30th November(Autumn), 2006. Current after the set up of artificial upwelling structure were shown different in the upper and lower layer, the boundary between the upper and lower layer was at $27{\sim}30m$ depth in summer. And the boundary layer was formed structure of three layer in Autumn. Upwelling and downwelling flow were occurred around the seamount, and these vertical flows were connected from surface to bottom The distribution of vertical shear and relative vorticity support the vertical flow around the seamount. The strength of vertical shear was higher and the direction of relative vorticity was anticlockwise (+) around the upwelling area.

  • PDF

A Conceptual Two-Layer Model of Thermohaline Circulation in a Pie-Shaped $\beta$-Plane Basin

  • Park, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The three dimensional structure of thermohaline circulation in a D-plane is investigated using a conceptual two layer model and a scaling argument. In this simple model, the water mass formation region is excluded. The upper layer represents the oceans above the main thermocline. The lower layer represents the deep ocean below the thermocline and is much thicker than the upper layer. In each layer, geostrophy and the linear vorticity balance are assumed. The cross interfacial velocity that compensates for the deep water mass formation balances downward heat diffusion from the top. From the above relations, we can determine the thickness of the upper layer, which is the same as thermocline depth. The results we get is basically the same as that we get for an f-plane ocean or the classical thermocline theory. Mass budget using the velocity scales from the scaling argument shows that western boundary and interior transports are much larger than the net meridional transport. Therefore in the thermohaline circulation, horizontal circulation is much stronger than the vertical circulation occuring on a meridional plane.

REMOTE SENSING OF ATMOSPHERIC FRONTAL DYNAMICS OVER THE OCEAN

  • Levy, Gad;Patoux, Jerome
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1003-1006
    • /
    • 2006
  • Frontal regions in midlatitude storms exhibit a wide range of behavior, which can be observed by remote sensors. These include decay, strengthening, rotating, and sometimes spawning of new cyclones. Here we refine and apply recent theories of front and frontal wave development to a case of a front clearly observed and analyzed in remote sensing data. By applying innovative analysis techniques to the data we assess the respective roles of ageostrophy, background deformation, and Boundary Layer processes in determining the evolution of the surface front. Our analysis comprises of diagnosis of the terms appearing in the vorticity and divergence equations using remotely sensed observations.

  • PDF

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

Development of a Nonlinear Ekman Pumping Model (비선형 Ekman 펌핑 모델의 개발)

  • Suh Yong-Kweon;Park Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

Experimental Study on Frictional Drag Reduction of Turbulent Flow by Polymer Solution Injection (폴리머 수용액 주입에 의한 난류마찰저항 감소에 대한 실험 연구)

  • 김형태;김덕수;김우전
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.9-15
    • /
    • 2003
  • An experimental study has been carried out as a basic research for development of the friction drag reduction technology for ships by polymer injection. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with injection of a polymer solution and basic experimental data on the friction drag reduction are obtained for a turbulent fiat-plate boundary layer and fully-developed channel flows. Variations of the friction drag reduction with some important parameters of polymer injection, such as the concentration of polymer solution, its injection flow rate and the measuring position downstream from the injection slot, are also investigated. Important experimental data and results obtained in the present study are presented. The amount of friction drag reduction up to 50% is observed.