• Title/Summary/Keyword: bottom wall boundary

Search Result 62, Processing Time 0.028 seconds

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls

  • Borzoo, Shahin;Ghaderi, Seyed Rasoul Mir;Mohebi, Saeed;Rahimzadeh, Ali
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.79-89
    • /
    • 2016
  • Cold formed steel shear panel is one of the main components to bearing lateral load in low and mid-rise cold formed steel structures. This paper uses finite element analysis to evaluate the stiffness, strength and failure mode at cold formed steel shear panels whit steel sheathing and nonlinear connections that are under monotonic loading. Two finite element models based on two experimental model whit different failure modes is constructed and verified. It includes analytical studies that investigate the effects of studs and steel sheathing thickness changes, fasteners spacing at panel edges, one or two sides steel sheathing and height-width ratio of wall on the lateral load capacity. Dominant failure modes include buckling of steel sheet, local buckling in boundary studs and sheet unzipping in the bottom half of the wall.

Heat Transfer Charaeteristic of Solar Concentration Absorber by the Aspect Ratio (종횡비에 따른 태양열 집광흡수기의 열전달특성)

  • Lee, Y.H.;Yi, C.S.;Bae, K.Y.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2002
  • This paper showed the study on the heat transfer into space by the aspect ratio of solar concentration absorber, and the purpose of this study was to obtain the optimum aspect ratio and tilt angle. The boundary conditions of a numerical model are assumed as follows : (1) The heat source is located at the center of absorber. (2) The bottom wall is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the study are the tilt angles and the aspect ratio. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at Ar=1:1 and ${\theta}=0^{\circ}$ and showed a low value as the tilt angles were increased.

  • PDF

Boundary Layer Flow Under a Sluice Gate (수직수문하의 경계층흐름)

  • 이정열
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.95-105
    • /
    • 1994
  • The boundary layer flow under a sluice gate is numerically solved by the random vortex sheet method combined with the vortex-in-cell method in a boundary-fitted coordinate system. The numerical solution shows that the boundary layer developed along the vertical sluice gate wall is the primary cause for the discrepancy in the contraction ratio between the laboratory experiments and inviscid theory; the bottom boundary layer plays much a smaller role in the discrepancy. By dimensional analysis it is concluded that the discrepancy is inversely proportional to the 3/4th power of the gate opening, as analyzed by Benjamin(1956). The results of the numerical simulation and dimensional analysis show a good agreement with experimental results obtained by Benjamin(1956).

  • PDF

Flow Visualization Using Thin Oil-Film in the Flow Control of Shock Wave/Turbulent Boundary-Layer Interactions (충격파와 경계층 간섭유동 제어에서 오일막을 이용한 유동가시화)

  • Lee Yeol
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-120
    • /
    • 2002
  • An experimental research has been carried out for flow control of the shock wave/turbulent boundary-layer interaction utilizing aeroelastic mesoflaps. Various shapes and thicknesses of the mesoflap are tested to achieve different deflections of the flap, and ail the results are compared to the solid-wall reference case without flow-control mechanism. Quantitative variation of skin friction has been measured downstream of the interactions using the laser interferometer skin friction meter, and qualitative skin friction distribution has been obtained by observing the interference fringe pattern on the oil-film surface. A strong spanwise variation in the fringe patterns with a narrow region of separation near the centerline is noticed to form behind the shock structure, which phenomenon is presumed partially related to three-dimensional flow structures associated with both the sidewalls and the bottom test surface. The effect of the shape of the cavity is also observed and it is noticed that the shape of the cavity is not negligible.

  • PDF

Two-Dimensional Free Convection in a Rectangular Enclosure Composed of a Hot Wall and Partially Cold Side Wall (아래면이 고온이고 옆면의 일부가 저온인 4각형 밀폐공간에서의 2차원 자연대류에 관한 연구)

  • 이택식;고상근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.213-221
    • /
    • 1985
  • Two dimensional laminar natural convection in a rectangular enclousure composed of a hot bottom wall, a partially cold side wall and insulated walls except the above walls was studied by numerical analysis and also by esperiments. In the experiments, the temperature distributions in the enclosure and Nusselt number distribution along the hot and cold walls were obtained by the use of Mach-Zehnder interferometer. At first, numerical analysis with the boundary conditions of the experimental apparatus was performed and the comparison of the results of the numerical and the experimental results validated the numerical model good ennough. Heat transfer characteristics were investigated by applying the verified numerical model with the parameters, i.e. Grashof number, aspect ratio, position of cold plate and insulation condition. The results showed the optimal conditions of temperature distribution and the position of cold wall, and the characteristics of insulation materials.

A numerical simulation of radiative heat transfer coupled with Czochralski flow in cusp magnetic field (복사열전달을 고려한 Cusp 자기장이 있는 초크랄스키 단결정 성장 공정의 유동에 관한 연구)

  • Kim, Tae-Ho;Lee, You-Seop;Chun,Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.988-1004
    • /
    • 1996
  • The characteristics of flow and oxygen concentration are numerically studied in Czochralski 8" silicon crystal growing process considering radiative heat transfer. The analysis of net radiative heat flux on all relevant surfaces shows growing crystal affects the heater power. Furthermore, the variation of the radiative heat flux along the crystal surface in the growing direction is confirmed and should be a cause of thermal stress and defect of the crystal. The calculated distributions of temperature and, heat flux along the wall boundaries including melt/crystal interface, free surface and crucible wall indicate that the frequently used assumption of the thermal boundary conditions of insulated crucible bottom and constant temperature at crucible side wall is not suitable to meet the real physical boundary conditions. It is necessary, therefore, to calculate radiative heat transfer simultaneously with the melt flow in order to simulate the real CZ crystal growth. If only natural convection is considered, the oxygen concentration on the melt/crystal interface decreases and becomes uniform by the application of a cusp magnetic filed. The heater power needed also increases with increasing the magnetic field. For the case of counter rotation of the crystal and crucible, the magnetic field suppresses azimutal flow produced by the crucible rotation, which results in the higher oxygen concentration near the interface.

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF