• Title/Summary/Keyword: botrytis cinerea

Search Result 405, Processing Time 0.029 seconds

First Report of Postharvest Gray Mold Rot on Carrot Caused by Botrytis cinerea in Korea

  • Aktaruzzaman, Md.;Kim, Joon-Young;Xu, Sheng-Jun;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.129-131
    • /
    • 2014
  • In February 2014, gray mold rotting symptoms were observed in carrots in cold storage at Gangneung, Gangwon province, Korea. The typical symptom of gray mold rot showed abundant blackish gray mycelia and conidia was observed on the infected root. The pathogen was isolated from infected root and cultured on PDA for further fungal morphological observation and confirming its pathogenicity according to Koch's postulates. Results of morphological data, pathogenicity test and rDNA internal transcribed spacer (ITS 1 and 4) sequence showed that the postharvest gray mold rot of carrot was caused by Botyrtis cinerea. This is the first report of postharvest gray mold rot on carrot in Korea.

Antifungal Activity of Bacillus sp. KMU-1011 Against Gray Mold Causing Botrytis cinerea (잿빛 곰팡이병원균 Botrytis cinerea에 대한 Bacillus sp. KMU-1011의 항진균활성)

  • Park Sung-Min;Kim Hyun-Soo;Yu Tae-Shick
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • We isolated a bacterium which produces antifungal substances from the Lake of Saimaa soils in Fin-land. The isolated strain was identified as Bacillus sp. and shown a strong antifungal activity on plant pathogenic fungi. Bacillus sp. KMU-1011 produced maximum level of antifungal substances under incubation aerobically at $24^{\circ}C$ for 48 hours in nutrient broth containing 1.0% glucose and 1.0% polypeptone at 180 rpm and initiated pH adjusted to 6.0. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against Botrytis cinerea KACC 40573 by dry cell weight. Chloroform extract of cultured broth also shown fungal growth inhibitory activity against C. gloeosporioides KACC 40804, D. bryoniae KACC 40669, F. oxysporum KACC 40037, F. oxysporum KACC 40052, F. oxysporum f. sp. radicis-lycopersici KACC 40537, F. oxysporum KACC 40902, M. cannonballus KACC 40940, P. cambivora KACC 40160, R. solani AG-1 KACC 40101, R. solani AG-4 KACC 40142, and S. scleotiorum KACC by agar diffusion method.

Purification and Characterization of Endo-polygalacturonase Produced by Plant Pathogenic fungus, Botrytis cinerea (식물 병원진균 Botrytis cinerea가 생산하는 Endo-polygalacturonase의 순수정제와 특성)

  • Kim, Byung-Young;Lee, Tae-Ho;Rha, Eu-Gene;Chung, Young-Ryun;Lee, Chang-Won;Kim, Jae-Won
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.330-339
    • /
    • 1997
  • Botrytis cinerea T91-1 has shown to produce at least four different polygalacturonases in a liquid medium containing citrus pectin as a carbon source. One of the enzymes, its molecular weight was estimated as 37 kDa by denatured polyacrylamide gel electrophoresis, was purified by a series of procedures including acetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. By viscometric analysis, the enzyme was revealed as an endo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Co^{2+}$, and $Cu^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was $55^{\circ}C$ and the enzyme showed optimal pH values between 4.0 and 4.5. The enzyme was stable up to 12 hours in the range of pH 4 to 7 and at the temperature below $30^{\circ}C$. Amino acid sequence from N-terminal up to 6 amino acids determined by Edman degradation showed little homology with polygalacturonases from fungi and plants.

  • PDF

Control Efficacy of Gray Mold on Strawberry Fruits by Timing of Chemical and Microbial Fungicide Applications (살균제와 미생물제 처리시기에 따른 딸기 잿빛곰팡이병 방제효과)

  • Nam, Myeong-Hyeon;Kim, Hyeon-Suk;Lee, Won-Keun;Gleason, Mark L.;Kim, Hong-Gi
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • The fungus Botrytis cinerea causes fruit rot of strawberry and the damages can result in harvest losses upto 50%. Proper timing of fungicide application is essential for successful control of Botrytis fruit rot, fenhexamid plus iminoctadine tris, cyprodinil plus fludioxonil, fludioxonil alone, and Bacillus subtilis QST713 were applied to individual buds, flowers, and green and red fruit of cultivar 'Seolhyang' ex vivo. Cyprodinil plus fludioxonil or fludioxonil alone was applied i) before and after a 5-hr period of low-temperature ($0^{\circ}C$) incubation ex vivo ii) in field trials. Strawberry flowers and red fruit were more susceptible to B. cinerea than the green fruits. Incidence of Botrytis rot with fenhexamid plus iminoctadine tris and cyprodinil plus fludioxonil was the lowest at flowering, whereas B. subtilis QST713 did not significantly among treatments. In 2010, incidence of Botrytis fruit rot was significantly reduced when fludioxonil was applied two times at 1 week intervals from 50% bloom in field trials. Cultivars Redpearl and Seolhyang were more susceptible to low-temperature than cvs. Maehyang and Akihime. Cyprodinil plus fludioxonil application was effective when applied before onset of the low-temperature treatment period. Fludioxonil showed the most effective when it was sprayed one and more than two times in before and post low-temperature condition, respectively. These results demonstrate that fungicide selection and timing can interact with stage of fruit development and low-temperature in determining effectiveness of suppression of Botrytis fruit rot.

The antifungal activity and growth promotion effects of Bacillus sp. LP03, TBM40-3 on Pohang Buchu (Leeks). (포항 부추에 대한 biosurfactant를 생산하는 Bacillus sp. LP03, TBM40-3의 항진균성과 생육에 미치는 영향)

  • 장혜원;최용락;주우홍;최윤혁;도형기;황철원
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.859-862
    • /
    • 2004
  • This report investigates antifungal activity and effects of growth promotion by biosurfactant produced from Bacillus sp. LP03 and TBM40-3 against fungus causing plants disease (Glay Mold-Botrytis cinerea). Antifugal activity against B. cinerea infeeted to leek (Allium tuberosum Rottler) exhibited better than antifungal agent farming drug (smilex, Dong bang agro., Seoul, Korea.) through the field test. After infected by plant's disease, the leaves growth and number are maintained under presenting biosurfactant produced strains. Especially, one of the strains, named Bacillus sp. LP03 showed strong antifungal activity on field studies.

Biological Control of Postharvest Root Rots of Ginseng (수확 후 인삼뿌리썩음병의 생물학적 방제)

  • 정후섭;정은선;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.268-277
    • /
    • 1998
  • The production of Korean ginseng, one of the most important medicinal root crops, is limited by many factors including soil sickness, root rots in fields as well as during storage prior to consumption. Although much research has been conducted on the diseases in field condition, little information is available on the control of postharvest roots rots. To obtain better management strategy of postharvest root rots in ginseng, biological control using antagonistic bacteria was attempted. Of 208 bacteria obtained form suppressive soil samples, 4 were selected based on the inhibitory effect on mycelial growth of two major causal fungi for postharvest root rots in ginseng, Botrytis cinerea and Fusarium solani. The culture filtrates of these bacterial antagonists greatly inhibited the conidial germination of both pathogenic fungi and produced abnormal morphology such as swollen germ tubes in F. solani and vacuolation of nongerminated conidia in B. cinerea. The population levels of bacterial antagonists on the ginseng roots were gradually increased up to 8 days of incubation. Postharvest root rots of ginseng caused by f. solani and B. cinerea were controlled in dipping tests in the ranges of 60∼80% by antagonistic Bacillus spp. obtained from suppressive soil. These results suggest that biological control using these antagonistic bacteria would be an alternative strategy to control postharvest root rots in ginseng.

  • PDF

Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation (전자빔 조사에 따른 잿빛곰팡이병원균 방제효과와 절화 장미의 수확 후 품질)

  • Kwon, Song;Choi, Gyung Ja;Kim, Ki Sun;Kwon, Hye Jin
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.507-516
    • /
    • 2014
  • The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition ($ED_{50}$) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at $10^{\circ}C$ than at $20^{\circ}C$. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although 'Decoration', 'Il se Bronze', 'Queen Bee', and 'Revue' roses tolerated and maintained overall postharvest quality up to 0.4 kGy, 'Vivian' did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.

Enhancement of Biological Control of Botrytis cinerea on Cucumber by Foliar Sprays and Bed Potting Mixes of Trichoderma harzianum YC459 and Its Application on Tomato in the Greenhouse

  • Lee Sun-Kug;Sohn Hwang-Bae;Kim Geun-Gon;Chung Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • Trichoderma harzianum YC459 (Th 459), isolated from sawdust compost, was effective in controlling cucumber and tomato gray mold caused by Botrytis cinerea under controlled and plastic film tunnel conditions. A water suspension of the wettable powder formulation of Th 459 significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by foliar spraying at all tested concentrations from $10^5\;to\;10^8$ colony forming unit (cfu)/ml in repeated experiments. The control efficacy was maintained at least seven days with the average control value of 70% in cucumber pot tests. Mixing one to eight grams of the granular formulation ($10^8cfu/g$ dry weight) of Th 459 into one liter nursery potting mix at seeding also significantly $(P\leq0.05)$ reduced the severity of cucumber gray mold by suppression of lesion formation three weeks after treatment. Application of mixing granular formulation at seeding in combination with foliar spraying during cultivation provided a more significant reduction $(P\leq0.05)$ of cucumber gray mold than granule mixing or leaf spray alone. The foliar spraying of the formulated wettable powder of Th 459 significantly $(P\leq0.05)$ reduced the infection of tomato fruits by B. cinerea as effective as the chemical fungicide, dichlofluanid, in three plastic film tunnel experiment trials. It is suggested that effective control of gray mold of cucumber and tomato can be provided by both treatment of Th 459 into potting mix and foliar spray through induction of systemic resistance and direct inhibition of the pathogen.

Control of Gray Mould(Botrytis cinerea) on Roses by Pre-and Post-harvest Treatments with Agricultural Chemicals (채화 전.후 약제처리에 의한 절화장미 잿빛곰팡이병 발병억제)

  • Lee, Jung-Sup;Han, Kyoung-Suk;Park, Jong-Han;Cheong, Seung-Ryong;Jang, Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.249-253
    • /
    • 2006
  • Several fungicides such as polyoxine B, fludioxonil, tebuconazole, tebuconazole+dichlofluanid, and fenbuconazole were sprayed once a week on roses in greenhouse. Botrytis infection on stalks was reduced by 71-89% after regular fungicide spray. The reduction of conidial inoculum by these treatments is also observed. The rose petal infections were controlled significantly by these fungicides only 2 days after the application. The development of gray mold on rose flowers harvested just after spray of fludioxonil, tebuconazole and tebuconazole+dichlofluanid were reduced compared to untreated control. This beneficial effect was also shown in flowers artificially inoculated with B. cinerea conidia after harvest. Post-harvest treatments by spraying cut flowers with the fungicides such as iprodine plus thiram, tebuconazole+dichlofluanid and polyoxin D reduced disease incidence by 50-55%.

Forecasting the Pepper Gray Mold Rot to Predict the Initial Infection by Botrytis cinerea in Greenhouse Conditions

  • Park, Seon-Hee;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.158-161
    • /
    • 1999
  • We determined threshold environmental factros to initiate infection of pepper plants by Botrytis cinerea, a fungal pathogen of pepper gray mold, in two greenhouse conditions. A new efficient spore-trapping method was developed to estimate population density of airborne conidia in the greenhouses, and spore release was measured using a Kerssies' selective medium. At a given day, spores were released greater during daytime (mostly from 7:30 am to 10:30 am and at 4:30 pm) than nighttime. Diurnal and nocturnal temperatures in the greenhouse-1 were about $25^{\circ}$ and $17^{\circ}$,and relative humidity was 100% for prolonged 24 h due to rain on December 17, 1997. Population density of air-borne conidia was 3.0$\times$103 conidia/ $0.5\textrm{m}^3$ after two days, and the initial infection occurred in ten days. During the same period of time in the greenhouse-2, diurnal temperature was about $25^{\circ}$ and nocturnal temperature was below $15^{\circ}$, and population density of air-borne conidia was 104 conidia/ $0.5\textrm{m}^3$. Under these conditions, the initial infection started in three days. This indicates that the early infection occurs under which diurnal temperature is approximately $25^{\circ}$, nocturnal temperature is maintained below $15^{\circ}$, and population density of air-borne conidia is 104 conidia/ $0.5\textrm{m}^3$ at saturated relative humidity condition.

  • PDF