Browse > Article
http://dx.doi.org/10.7235/hort.2014.14021

Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation  

Kwon, Song (Department of Plant Science, Seoul National University)
Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
Kim, Ki Sun (Department of Plant Science, Seoul National University)
Kwon, Hye Jin (Department of Floral and Plant Design, Cheonan Yonam College)
Publication Information
Horticultural Science & Technology / v.32, no.4, 2014 , pp. 507-516 More about this Journal
Abstract
The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition ($ED_{50}$) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at $10^{\circ}C$ than at $20^{\circ}C$. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although 'Decoration', 'Il se Bronze', 'Queen Bee', and 'Revue' roses tolerated and maintained overall postharvest quality up to 0.4 kGy, 'Vivian' did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.
Keywords
flower export; ionizing radiation; phytosanitary; quarantine; temperature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hatton, T.T. and R.H. Cubbedge. 1979. Phytotoxicity of methyl bromide as a fumigant for Florida citrus fruit. Proc. Fla. State Hort. Soc. 92:167-169.
2 Hayashi, T., O.K. Kikuchi, and T. Dohino. 1998. Electron beam disinfestation of cut flowers and their radiation tolerance. Radiat. Phys. Chem. 51:175-179.
3 International Plant Protection Convention (IPPC). 2008. Replacement or reduction of the use of methyl bromide as a phytosanitary measure. IPPC Recommendation, CPM-3. Rome.
4 Korea Agricultural Trade Information, Korea Agro-Fisheries and Food Trade Corporation (KATI). 2010. Korea agricultural trade information. http://kati.net/kati.do
5 Kikuchi, O.K. 2003. Gamma and electron-beam irradiation of cut flowers. Radiat. Phys. Chem. 66:77-79.   DOI
6 Kim, D.H. 2006. Principles of radiation sterilization of food materials. Food Ind. Nutr. 11:21-29.
7 Koo, H.N., S.H. Yun, C. Yoon, and G.H. Kim. 2012. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess). Radiat. Phys. Chem. 81:86-92.   DOI   ScienceOn
8 Lahlali, R., M.N. Serrhini, D. Friel, M.H. Jijakli. 2007. Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. Intl. J. Food Microbiol. 114:1-9.   DOI
9 Lee, H.S. and Y.C. Shin. 2008. Workers'exposure to airborne methyl bromide in the exporting/importing plants and products quarantine company. J. Kor. Soc. Occup. Environ. Hyg. 18:32-40.
10 Migdal, W., L.B. Orlikowski, M. Ptaszek, and U. Gryczka. 2012. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates. Radiat. Phys. Chem. 81:1012-1016.   DOI
11 Moon, S.R., B.K. Son, J.O. Yang, J.S. Woo, C. Yoon, and G.H. Kim. 2010. Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129-137.   과학기술학회마을   DOI
12 Orlikowski, L.B., W. Migdal, M. Ptaszek, and U. Gryczka. 2011. Effectiveness of electron beam irradiation in the control of some soilborne pathogens. Nukleonika 56:357-362.
13 Pasini, C., F. D´Aquila, P. Curir, and M.L. Gullino. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protec. 16:251-256.   DOI   ScienceOn
14 Reddy, S., J.A. Spencer, and S.E. Newman. 1992. Leaflet surfaces of blackspot-resistant and susceptible roses and their reactions to fungal invasion. HortScience 27:133-135.
15 Sangwanangkul, P., P. Saradhuldhat, and R.E. Paull. 2008. Survey of tropical cut flower and foliage responses to irradiation. Postharvest Biol. Technol. 48:264-271.   DOI
16 Sommer, N.F., R.J. Fortlage, P. M. Buckley, and E.C. Maxie. 1972. Comparative sensitivity to gamma radiation of conidia, mycelia, and sclerotia of Botrytis cinerea. Radiat. Bot. 12:99-103.   DOI
17 Tiryaki, O. 1990. Inhibition of Penicillium expansum, Botrytis cinerea, Rhizopus stolonifer, and Alternaria tenuissima, which were isolated from Ankara pears by gamma irradiation. J. Turkish Phytopathol. 19:133-140.
18 Wani, A.M., P.R. Hussain, R.S. Meena, and M.A. Dar. 2008. Effect of gamma-irradiation and refrigerated storage on the improvement of quality and shelf life of pear (Pyrus communis L., Cv. Bartlett/William). Radiat. Phys. Chem. 77:983-989.   DOI   ScienceOn
19 United National Environment Programme (UNEP). 2012. Handbook for the Montreal protocol on substances that deplete the ozone layer. 9th ed. UNEP, Nairobi. p. 40.
20 Van Den Oever, R., D. Roosels, and D. Lahaye. 1982. Actual hazard of methyl bromide fumigation in soil disinfection. Brit. J. Ind. Med. 39:140-144.
21 Bulger, M.A., M.A. Ellis, and L.V. Madden. 1987. Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77:1225-1230.   DOI
22 Animal and Plant Health Inspection Service (APHIS). 2002. Irradiation phytosanitary treatment of imported fruit and vegetables. Federal Register 67:65016-65029.
23 Animal and Plant Health Inspection Service (APHIS). 2006. Treatments for fruits and vegetables. Federal Register 71:4451-4464.
24 Barkai-Golan, R., R. Padova, I. Ross, M. Lapidot, H. Davidson, and A. Copel. 1993. Combined hot water and radiation treatments to control decay of tomato fruits. Sci. Hortic. 56:101-105.   DOI
25 Chang, A.Y., R.J. Gladon, M.L. Gleason, S.K. Parker, N.H. Agnew, and D.G. Olson. 1997. Postharvest quality of cut roses following electron-beam irradiation. HortScience 32:698-701.
26 Choi, G.J., K.S. Jang, Y.H. Choi, and J.C. Kim. 2009. Control efficacy of a new fungicide fludioxonil on lettuce gray mold according to several conditions. Res. Plant Dis. 15:217-221.   과학기술학회마을   DOI
27 Follett, P.A. 2008. Effect of irradiation on Mexican leafroller (Lepidoptera: Tortricidae) development and reproduction. J. Econ. Entomol. 101:710-715.   DOI
28 Elad, Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Protec. 7:361-366.   DOI
29 Fan, X. and K.J.B. Sokorai. 2011. Effects of gamma irradiation, modified atmosphere packaging, and delay of irradiation on quality of fresh-cut lceberg lettuce. HortScience 46:273-277.
30 Fiester, S.E., S.L. Helfinstine, J.C. Redfearn, R.M. Uribe, and C.J. Woolverton. 2012. Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. 2012:1-9.
31 Gomes, C., P. Da Silva, E. Chimbombi, J. Kim, E. Castell-Perez, and R.G. Moreira. 2008. Electron-beam irradiation of fresh broccoli heads (Brassica oleracea L. italica). LWT-Food Sci. Technol. 41:1828-1833.   DOI   ScienceOn
32 Gryczka, U., M. Ptaszek, W. Migdal, and L.B. Orlikowski. 2010. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity. Nukleonika 55:359-362.
33 Hammer, P.E. 1988. Postharvest control of Botrytis cinerea on cut roses with picro-cupric-ammonium formate. Plant Dis. 72:347-350.   DOI
34 Hammer, P.E., S.F. Yang, M.S. Reid, and J.J. Marois. 1990. Postharvest control of Botrytis cinerea infections on cut roses using fungistatic storage atmospheres. J. Amer. Soc. Hort. Sci. 115:102-107.
35 Hasbullah, N.A., R.M. Taha, A. Saleh, and N. Mahmad. 2012. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic. Bras. 30:252-257.   DOI
36 Yang, M.S., C.C. Chyau, D.T. Horng, and J.S. Yang. 2002. Effects of irradiation on epidermis ultrastructure of fresh day-lily flowers. Radiat. Phys. Chem. 63:249-251.   DOI
37 Food and Agriculture Organization of the United Nations (FAO). 2003. Guidelines for the use of irradiation as a phytosanitary measure. International plant protection convention, international standards for phytosanitary measures (ISPM) No. 18. FAO, Rome.
38 Kang, T.J., H.Y. Jeon, C.Y. Yang, H.H. Kim, and M.R. Cho. 2007. Development of labor-saving pest management system for cut flower rose cultivation. Kor. J. Hort. Sci. Technol. 25:418-424.   과학기술학회마을
39 Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries of Japan (PPS). 2010. Plant quarantine statistics. http://www.maff.go.jp/pps/