• Title/Summary/Keyword: boronizing

Search Result 23, Processing Time 0.021 seconds

A Study on the Rare-earth Boronizing Treatment of STD 61 Steel (열간금형용강의 희토류붕화처리에 관한 연구)

  • Kim, C.C.;Youn, J.H.;Jang, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.217-223
    • /
    • 2000
  • The boronizing effects of STD 61 steel have been studied on the micro structure and hardness. The STD 61 Steel was soaked in molten salt, consisted of KCl, $BaCl_2$, NaF, $B_2O_3$, FeB, and Ce, at various temperatures and times. The boronizing conditions for the peak hardness were the temperature range of $900^{\circ}C$ to $950^{\circ}C$ for 5 hr and that of $1000^{\circ}C$ for 3 hr, respectively. Four boride layers such as FeB, $Fe_2B$, ${\alpha}$ and matrix layer surface were observed from the microscopic surface examination. The thickness of boride layer was increased by increasing the boronizing time and the temperature. The structure of boride layer was tooth shape.

  • PDF

A Study On the Sand Wear Resistance and Formation Behavior of Boride Layer Formed on Ni-Cr-Mo Steel by Plasma Paste Boronizing Treatment (Plasma Paste Boronizing법에 의한 Ni-Cr-Mo강의 붕화물층 생성거동과 내 토사마모특성에 관한 특성)

  • Cho J. H;Park H. K;Son K. S;Yoon J. H;Kim H. S;Kim C. G
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The surface property and formation behavior of a boride layer formed on Ni-Cr-Mo steel in a plasma paste boronizing treatment were investigated. The plasma paste boronizing treatment was carried out at 973~1273 K for 1-7 hrs under the gas ratio of Ar:H$_2$ (2:1). The thickness of the boride layer increased with increasing temperature and time in the boronizing treatment. The cross-section of the boride layer was a tooth structure and the hardness was Hv 2000~2500. XRD analysis revealed that the compound was identified as FeB, $Fe_2$B, and mixed phase of FeB/$Fe_2$B in the boride layer formed at 973~1073 K, 1173K, and 1273K, respectively. The Ni-Cr-Mo alloy boronized at 1173-1273 K showed the best excellent wear resistance against the sand. As a results of corrosion test in 1 M $H_2$$SO_4$ solution, $Fe_2$B formed on the matrix alloy exhibited higher corrosion resistance than FeB.

The Effect of Boronizing on the Magnetization Behaviour of Low Carbon Microalloyed Steels

  • Calik, Adnan;Karakas, Mustafa Serdar;Ucar, Nazim;Aytar, Omer Baris
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.96-99
    • /
    • 2012
  • The change of saturation magnetization in boronized low carbon microalloyed steels was investigated as a function of boronizing time. Specimens were boronized in an electrical resistance furnace for times ranging from 3 to 9 h at 1123 K. The metallurgical and magnetic properties of the specimens were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). A boride layer with saw-tooth morphology consisting of FeB and $Fe_2B$ was observed on the surface, its thickness ranged from 63 ${\mu}m$ to 140 ${\mu}m$ depending on the boronizing time. XRD confirmed the presence of $Fe_2B$ and FeB on the surface. The saturation magnetization decreased with increasing boronizing time. This decrease was attributed to the increased thickness of the FeB and $Fe_2B$ phases. Cracks were observed at the FeB/$Fe_2B$ interfaces of the samples. The number of interfacial cracks increased with increasing boronizing time.

Characteristics of Two-Step Plasma-Assisted Boronizing Process in an Atmosphere of BCl3-H2-Ar (BCl3-H2-Ar 분위기를 이용한 2단계 플라즈마 보로나이징 특성)

  • Nam, Kee-Seok;Lee, Gu-Hyun;Shin, Pyung-Woo;Song, Yo-Seung;Kim, Bae-Yeon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.358-361
    • /
    • 2006
  • A two-step plasma-assisted boronizing process was carried out on the AISI 1045 steel substrate to reduce the pore density introduced by a conventional single plasma boronizing process. The specimens were plasma boronized for 1 h at $650^{\circ}C$ and subsequently far 7 h at $800^{\circ}C$ in an atmosphere of $BCl_3-H_2-Ar$. The boride layer thickness was parabolic in boronizing time, a high HV reading of 1540 was found up to the boride layer thickness of $25{\mu}m$. It was found that the morphology of the boride layer prepared by the two-step boronizing process was changed from a columnar to a tooth-like structure and the pores in the borided steel were eliminated completely in comparison to those synthesized by the conventional single boronizing process, implying that it is highly applicable for enhancing the dense and compact coating properties of the low-alloy steel.

A Study on the Boronizing treatment of the microalloyed steel (비조질강의 Boronizing 처리에 관한 연구)

  • 김강형;선명숙;윤재홍;변응선;권동일
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.4
    • /
    • pp.268-277
    • /
    • 1996
  • Boronizing treatment of Microalloyed steel has been investigated by mean of Boronizing paste mainly consisted of $B_4C$ at various temperatures and times. The micro hardness of the boride layers were about HV 1200~1500. The thickness of the boride layer were increased with an increase of square root of treatment time at constant temperature. The activation energy for diffusion of boron in the specimen obtained from the slope of Arrhenius plots was 254 kJ/mol, but 197 kJ/mol for the induction heated specimen. The boride layer had a good corrosion resistance in solutions of 20% HCl and 20% $H_2SO_4$, solution. In 20% $HNO_3$ solution, however, its corrosion resistance increased. The boride layer had a good high temperature oxidation resistance at below $800^{\circ}C$, but at temperature above $900^{\circ}C$, the oxidation resistance decreased as the oxidation temperature.

  • PDF

Surface Treatment of Steel by Plasma Boronizing

  • Lee, G.H.;Na, K.S.m;Kwon, S.C.;Kim, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.49-57
    • /
    • 1995
  • At present the processes of boronizing have been mostly studied in a plasma from gaseous compounds containing the impregnating element and are in an industrial use. These have been investigated by a variety of works in a glow discharge with different mixture ratios of $B_2H_6$ and $H_2$ as well as $BCl_3$ and $H_2$. The active atomosphere has been diluted by Ar or some other inert gas in order to enhance control of boron potential and to reduce the ignition voltage of the glow discharge. The Control of gaseous atomosphere is essential to a boride layer in plamsa boronizing treatment. The boride formation is required to make the workpiece surface saturated with boron content. The present study considers the efficiency of plasma boronizing reactions and the morphology of boride layer under various plasma conditions

  • PDF