DOI QR코드

DOI QR Code

The Effect of Boronizing on the Magnetization Behaviour of Low Carbon Microalloyed Steels

  • Calik, Adnan (Suleyman Demirel University, Faculty of Technology, Manufacturing Engineering Department) ;
  • Karakas, Mustafa Serdar (Suleyman Demirel University, Faculty of Technology, Manufacturing Engineering Department) ;
  • Ucar, Nazim (Suleyman Demirel University, Faculty of Science and Arts, Physics Department) ;
  • Aytar, Omer Baris (Suleyman Demirel University, Faculty of Science and Arts, Physics Department)
  • Received : 2011.12.14
  • Accepted : 2012.04.18
  • Published : 2012.06.30

Abstract

The change of saturation magnetization in boronized low carbon microalloyed steels was investigated as a function of boronizing time. Specimens were boronized in an electrical resistance furnace for times ranging from 3 to 9 h at 1123 K. The metallurgical and magnetic properties of the specimens were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). A boride layer with saw-tooth morphology consisting of FeB and $Fe_2B$ was observed on the surface, its thickness ranged from 63 ${\mu}m$ to 140 ${\mu}m$ depending on the boronizing time. XRD confirmed the presence of $Fe_2B$ and FeB on the surface. The saturation magnetization decreased with increasing boronizing time. This decrease was attributed to the increased thickness of the FeB and $Fe_2B$ phases. Cracks were observed at the FeB/$Fe_2B$ interfaces of the samples. The number of interfacial cracks increased with increasing boronizing time.

Keywords

References

  1. J. H. Kong and C. S. Xie, Mater. Design 27, 1169 (2006). https://doi.org/10.1016/j.matdes.2005.02.006
  2. J. Calvo, I-H. Jung, A. M. Elwazri, D. Bai, and S. Yue, Mater. Sci. Eng. A520, 90 (2009).
  3. A. Abdollah-Zadeh and B. Eghbali, Mater. Sci. Eng. A457, 219 (2007).
  4. S. Gunduz and M. Acarer, Mater. Design 27, 1076 (2006). https://doi.org/10.1016/j.matdes.2005.01.020
  5. S.-J. Lee and Y.-K. Lee, Scr. Mater. 52, 973 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.028
  6. J. S. Park and Y. K. Lee, Scr. Mater. 57, 109 (2007). https://doi.org/10.1016/j.scriptamat.2007.03.041
  7. F. Xiao, B. Liao, Y. Shan, and K. Yang, Mater. Charact. 54, 417 (2005). https://doi.org/10.1016/j.matchar.2005.01.007
  8. Y. Kayali, S. Taktak, S. Ulu, and Y. Yalcin, Mater. Design 31, 1799 (2010). https://doi.org/10.1016/j.matdes.2009.11.017
  9. C. Bindal and A. H. Ucisik, J. Aust. Ceram. Soc. 34, 287 (1998).
  10. G. Stergioudis, Cryst. Res. Technol. 41, 1002 (2006). https://doi.org/10.1002/crat.200610711
  11. H.-J. Hunger and G. Lobig, Thin Solid Films 310, 244 (1997). https://doi.org/10.1016/S0040-6090(97)09514-X
  12. L. B. Sipahi, M. R. Govindaraj, D. C. Jiles, P. K. Liaw, and D. S. Drinon, Rev. Progress in Quantitative Nondestructive Eval. 13, 1801 (1994).
  13. D. G. Park, E. J. Moon, D. J. Kim, S. H. Chi, and J. H. Hong, Physica B327, 315 (2003).
  14. D. G. Park, J. H. Hong, I. S. Kim, and H. C. Kim, J. Mater. Sci. 32, 6141 (1997). https://doi.org/10.1023/A:1018608321067
  15. J. A. Vaccari, Des. Eng. 52, 53 (1981).
  16. R. Gopalan, Y. M. Chen, T. Ohkubo, and K. Hono, Scr. Mater. 61, 544 (2009). https://doi.org/10.1016/j.scriptamat.2009.05.022
  17. L. K. Varga, F. Mazaleyrat, J. Kovac, and A. Kakay, Mater. Sci. Eng. A304-306, 946 (2001).
  18. B. Weglinski and J. Kaczmar, Powder Metall. 23, 210 (1980). https://doi.org/10.1179/pom.1980.23.4.210
  19. P. Ripka, M. Butta, M. Malatek, S. Atalay, and F. E. Atalay, Sens. Actuators: A145-146, 23 (2008).
  20. L. L. Qian and G. A. Stone, J. Mater. Perform. 4, 59 (1995). https://doi.org/10.1007/BF02682706
  21. O. Knotek, E. Lugscheider, and K. Leuschen, Thin Solid Films 45, 331 (1977). https://doi.org/10.1016/0040-6090(77)90266-8
  22. H. Kemi, C. Sasaki, M. Kitamura, N. Satomi, Y. Ueda, and M. Nishikawa, J. Nuclear Mater. 26, 1108 (1999).
  23. T. W. Spence and M. M. Makhlouf, J. Mater. Proc. Technol. 168, 127 (2005).
  24. V. Jain and G. Sundararajan, Surf. Coat. Technol. 149, 21 (2002). https://doi.org/10.1016/S0257-8972(01)01385-8
  25. C. W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, North-Holland, Amsterdam (1977).
  26. S. Sen, M. Usta, C. Bindal, and A. H. Ucisik, Korean J. Ceram. 6, 27 (2000).
  27. A. K. Sinha, Boriding (Boronizing). In: ASM Materials Handbook 4, ASM International, Materials Park (1991) p 437.
  28. A. S. Dehlinger, J. F. Pierson, A. Roman, and P. H. Bauer, Surf. Coat. Technol. 174-175, 331 (2003). https://doi.org/10.1016/S0257-8972(03)00399-2
  29. L. S. Dorneles, M. Venkatesan, M. Moliner, J. G. Lunney, and J. M. D. Coey, Appl. Phys. Lett. 85, 6377 (2004). https://doi.org/10.1063/1.1840113
  30. I. Akkurt, A. Calik, and H. Akyildirim, Nucl. Eng. Des. 241, 55 (2011). https://doi.org/10.1016/j.nucengdes.2010.10.009