• Title/Summary/Keyword: bone marrow-derived dendritic cells

Search Result 52, Processing Time 0.02 seconds

Hair-Loss Preventing Effect of Grateloupia elliptica

  • Kang, Jung-Il;Kim, Sang-Cheol;Han, Sang-Chul;Hong, Hye-Jin;Jeon, You-Jin;Kim, Bo-Ra;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.118-124
    • /
    • 2012
  • This study was conducted to evaluate the effect of Grateloupia elliptica, a seaweed native to Jeju Island, Korea, on the prevention of hair loss. When immortalized rat vibrissa dermal papilla cells were treated with extract of G. elliptica, the proliferation of dermal papilla cells significantly increased. In addition, the G. elliptica extract significantly inhibited the activity of $5{\alpha}$-reductase, which converts testosterone to dihydrotestosterone (DHT), a main cause of androgenetic alopecia. On the other hand, the G. elliptica extract promoted $PGE_2$ production in HaCaT cells in a dose-dependent manner. The G. elliptica extract exhibited particularly high inhibitory effect on LPS-stimulated IL-12, IL-6, and TNF-${\alpha}$ production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells. The G. elliptica extract also showed inhibitory activity against Pityrosporum ovale, a main cause of dandruff. These results suggest that G. elliptica extract has the potential to treat alopecia via the proliferation of dermal papilla, $5{\alpha}$-reductase inhibition, increase of $PGE_2$ production, decrease of LPS-stimulated pro-inflammatory cytokines and inhibitory activity against Pityrosporum ovale.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

Deoxypodophyllotoxin Induces a Th1 Response and Enhances the Antitumor Efficacy of a Dendritic Cell-based Vaccine

  • Lee, Jun-Sik;Kim, Dae-Hyun;Lee, Chang-Min;Ha, Tae-Kwun;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Son, Kwang-Hee;Jung, In-Duk;Lee, Eun-Kyung;Shin, Yong-Kyoo;Ahn, Soon-Cheol;Park, Yeong-Min
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2011
  • Background: Dendritic cell (DC)-based vaccines are currently being evaluated as a novel strategy for tumor vaccination and immunotherapy. However, inducing long-term regression in established tumor-implanted mice is difficult. Here, we show that deoxypohophyllotoxin (DPT) induces maturation and activation of bone marrow-derived DCs via Toll-like receptor (TLR) 4 activation of MAPK and NF-${\kappa}B$. Methods: The phenotypic and functional maturation of DPT-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. DPT-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity and for tumor regression against melanoma. Results: DPT promoted the activation of $CD8^+$ T cells and the Th1 immune response by inducing IL-12 production in DCs. In a B16F10 melanoma-implanted mouse model, we demonstrated that DPT-treated DCs (DPT-DCs) enhance immune priming and regression of an established tumor in vivo. Furthermore, migration of DPT-DCs to the draining lymph nodes was induced via CCR7 upregulation. Mice that received DPT-DCs displayed enhanced antitumor therapeutic efficacy, which was associated with increased IFN-${\gamma}$ production and induction of cytotoxic T lymphocyte activity. Conclusion: These findings strongly suggest that the adjuvant effect of DPT in DC vaccination is associated with the polarization of T effector cells toward a Th1 phenotype and provides a potential therapeutic antitumor immunity.

Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection

  • Shim, Ye Ri;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Respiratory syncytial virus (RSV) infection is recognized by the innate immune system through Toll like receptors (TLRs) and retinoic acid inducible gene I. These pathways lead to the activation of type I interferons and resistance to infection. In contrast to TLRs, very few studies have examined the role of NOD-like receptors in viral recognition and induction of adaptive immune responses to RSV. Caspase-1 plays an essential role in the immune response via the maturation of the proinflammatory cytokines IL-$1{\beta}$ and IL-18. However, the role of caspase-1 in RSV infection in vivo is unknown. We demonstrate that RSV infection induces IL-$1{\beta}$ secretion and that caspase-1 deficiency in bone marrow derived dendritic cells leads to defective IL-$1{\beta}$ production, while normal RSV viral clearance and T cell responses are observed in caspase-1 deficient mice following respiratory infection with RSV. The frequencies of IFN-${\gamma}$ producing or RSV specific T cells in lungs from caspase-1 deficient mice are not impaired. In addition, we demonstrate that caspase-1 deficient neonatal or young mice also exhibit normal immune responses. Furthermore, we find that IL-1R deficient mice infected with RSV exhibit normal Th1 and cytotoxic T lymphocytes (CTL) immune responses. Collectively, these results demonstrate that in contrast to TLR pathways, caspase-1 might not play a central role in the induction of Th1 and CTL immune responses to RSV.

Immunomodulatory Properties of Lactobacillus plantarum NC8 Expressing an Anti-CD11c Single-Chain Fv Fragment

  • Liu, Jing;Yang, Guilian;Gao, Xing;Zhang, Zan;Liu, Yang;Yang, Xin;Shi, Chunwei;Liu, Qiong;Jiang, Yanlong;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.160-170
    • /
    • 2019
  • The lactic acid bacteria species Lactobacillus plantarum (L. plantarum) has been used extensively for vaccine delivery. Considering to the critical role of dendritic cells in stimulating host immune response, in this study, we constructed a novel CD11c-targeting L. plantarum strain with surface-displayed variable fragments of anti-CD11c, single-chain antibody (scFv-CD11c). The newly designed L. plantarum strain, named 409-aCD11c, could adhere and invade more efficiently to bone marrow-derived DCs (BMDCs) in vitro due to the specific interaction between scFv-CD11c and CD11c located on the surface of BMDCs. After incubation with BMDCs, the 409-aCD11c strain harboring a eukaryotic vector pValac-GFP could lead to more efficient expression of GFP compared with wild-type strains shown by flow cytometry analysis, indicating the enhanced translocation of pValac-GFP from L. plantarum to BMDCs. Similar results were also observed in an in vivo study, which showed that oral administration resulted in efficient expression of GFP in both Peyer's patches (PP) and mesenteric lymph nodes (MLNs) within 7 days after the last administration. In addition, the CD11c-targeting strain significantly promoted the differentiation and maturation of DCs, the differentiation of $IL-4^+$ and $IL-17A^+$ T helper (Th) cells in MLNs, as well as production of $B220^+$ $IgA^+$ B cells in the PP. In conclusion, this study developed a novel DC-targeting L. plantarum strain which could increase the ability to deliver eukaryotic expression plasmid to host cells, indicating a promising approach for vaccine study.

The Interaction of Adipose Tissue with Immune System and Related Inflammatory Molecules (지방조직과 면역체계의 상호작용 및 관련 염증물질에 관한 고찰)

  • Kim, Yu-Hee;Choi, Bong-Hyuk;Do, Myoung-Sool
    • IMMUNE NETWORK
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2006
  • Background: Adipose tissues were initially introduced as energy storages, but recently they have become famous as an endocrine organ which produces and secretes various kinds of molecules to make physiologic and metabolic changes in human body. It has been studied that these molecules are secreted in abundance as the adipose tissue becomes bigger along with obesity. Furthermore, it has been found that they are mediating systemic inflammation and generation of metabolic diseases such as type 2 diabetes and atherosclerosis. On the basis of these, we studied previous papers which have been researched about the interaction between preadipocytes and macrophages, adipose tissues and lymph nodes, and adipose tissue secreting molecules. Results: Firstly, preadipocytes and macrophages are expressing similar transcriptomes and proteins, and preadipocytes can be converted to mature macrophages which have phagocytic activity. Moreover, the monocytes, which initially located in the bone marrow, are filtrated to the adipose tissue by monocyte chemotatic protein-1 and are matured to macrophages by colony stimulating factor-1. Secondly, adipose tissues and their associated lymph nodes are interacting each other in terms of energy efficiency. Lymph nodes promote lipolysis in adipose tissues, and polyunsaturated fatty acids in adipocytes become energy sources for dendritic cells. Lastly, adipose tissues produce and secrete proinflammatory molecules such as leptin, adiponectin, TNF-${\alpha}$, IL-6, and acute phase proteins, which induce the inflammation and potentially generate metabolic diseases. Conclusion: According to these, we can link adipose tissues to inflammation, but we need to affirm the actual levels and roles of adipose tissue-derived proinflammatory molecules in human body.

Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA

  • Kim, Dong-Bum;Kwon, Sang-Hoon;Ahn, Chi-Seok;Lee, Young-Hee;Choi, Soo-Young;Park, Jin-Seu;Kwon, Hyeok-Yil;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.758-763
    • /
    • 2011
  • Immunostimulatory CpG-DNA targeting TLR9 is one of the most extensively evaluated vaccine adjuvants. Previously, we found that a particular form of natural phosphodiester bond CpG-DNA (PO-ODN) encapsulated in a phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE) : cholesterol hemisuccinate (CHEMS) (1 : 1 ratio) complex (Lipoplex(O)) is a potent adjuvant. Complexes containing peptide and Lipoplex(O) are extremely useful for B cell epitope screening and antibody production without carriers. Here, we showed that IL-12 production was increased in bone marrow derived dendritic cells in a CpG sequence-dependent manner when PO-ODN was encapsulated in Lipoplex(O), DOTAP or lipofectamine. However, the effects of Lipoplex(O) surpassed those of PO-ODN encapsulated in DOTAP or lipofectamine and also other various forms of liposome-encapsulated CpG-DNA in terms of potency for protein antigen-specific IgG production and Th1- associated IgG2a production. Therefore, Lipoplex(O) may have a unique potent immunoadjuvant activity which can be useful for various applications involving protein antigens as well as peptides.

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Immunomodulatory activities of crude polysaccharide fraction separated from Perilla frutescens Britton var. acuta Kudo (자소엽(Perilla frutescens Britton var. acuta Kudo) 조다당류 추출물의 면역활성 효과)

  • Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.559-566
    • /
    • 2017
  • This aim of this study was to examine the immunomodulatory activities of crude polysaccharides from Perilla frutescens Britton var. acuta Kudo (PCP) in mouse bone marrow-derived dendritic cells (BMDC) and splenocytes. The immunomodulatory activity was determined by cell viability, nitric oxide (NO) production, cell surface marker expression (CD 80/86 and MHC class I/II), and cytokine production in BMDC, and cell viability, and cytokine production in splenocytes. Cell proliferation and cytokine production (tumor necrosis factor; TNF-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and IL-12) tested in BMDC were significantly increased by PCP treatment. Additionally, the cell surface markers (CD 80/86, MHC class I/II) were highly increased by PCP treatment. For cytokine production in splenocytes, PCP treatment significantly increased the production of Th 1 cytokines [IL-2 and interferon (IFN)-${\gamma}$], but not Th 2 cytokines (IL-4). Therefore, PCP can induce immune cell activation and is a potential candidate for the development of nutraceuticals to boost the immune system.