• Title/Summary/Keyword: bone lead

Search Result 326, Processing Time 0.028 seconds

A Case of a 2-year-old Girl with Type I Gaucher Disease Presenting with Growth Retardation and Leg Pain (2세 여아에서 성장 부진과 다리 통증을 동반한 1형 고셔병 증례)

  • Park, Yesul;Hwang, Jae-Yeon;Hwang, Eun Ha;Cheon, Chong Kun;Lee, Beom Hee;Yoo, Han-Wook;Kim, Yoo-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Gaucher disease (GD) is caused by the deficiency of glucocerebrosidase. In pediatric patients with GD, especially Type I GD, enzyme replacement therapy (ERT) can reduce the hepatosplenomegaly and improve the hematologic finding and growth velocity. Herein, we report a 2-year-old girl with Type I GD presented with hepatosplenomegaly, bone pain and growth retardation. A 2 year-old-girl was referred to our hospital due to severe hepatosplenomegaly and growth retardation. She suffered from both leg pain and chronic fatigue. Simple x-ray showed widened distal long bones like that of an 'Erlenmeyer flask' which is associated with GD. The laboratory test showed anemia and thrombocytopenia. The enzyme activity was markedly reduced and the direct sequencing of the GBA gene showed the compound heterozygous mutations, p.G46E and p.L444P. As the G46E have been considered as the protective gene against neuronopathic genotype, we could assess the Type I GD in this patient. After one year of ERT, the growth velocity became 11 cm per year. Bone pain and fatigue disappeared. The volume of liver and spleen was reduced from $683cm^3$ and $703cm^3$ to $590cm^3$ and $235cm^3$, respectively. Although GD is an extremely rare disease in Korea, growth retardation and bone pain in children are the important signs which lead to early detection of GD and a simple radiologic finding is helpful to assess the GD at outpatient clinic. We highlight that the early diagnosis and early ERT is important for good growth and outcome for pediatric patients with GD.

  • PDF

A retrospective clinical study of survival rate of the ITI $TE^{(R)}$ implant (ITI $TE^{(R)}$ 임플란트의 생존율에 관한 후향적 임상 연구)

  • Suh, Hyun-Kee;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho;Chai, Jung-Kyu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.673-682
    • /
    • 2006
  • Recent study shows that implant design has a great impact on initial stability in bone. The ITI $TE^{(R)}$ implant, designed originally for immediate placement has a tapered/ cylindrical form which fits the anatomical shape of the natural alvelous or tooth root. The increased diameter at the collar region coupled with more threads lead to more bone contact and enhanced stability. The aim of this retrospective study is to evaluate the clinical use and the efficacy of recently introduced ITI TE implant with a new macro-design. The following results are compiled from 139 patients who received ITl TE implant surgery at the periodontal department. of Yonsei University Hospital between July 2002 and September 2005. 1. 139 patients received 173 ITl $TE^{(R)}$ implants in their maxilla and mandible (Mx 82, Mn 91). Posterior area accounted for 84% of the whole implant surgery, 2. In the distribution of bone quality, type III(41,0%) was the most, followed by type IV(41,0%) and type II (27.7%). As for the bone quantity, type B(43.9%) was the most, followed by type C(42.2%), type D(12.2%) and type A(1.7%). 3. 125 implants(83.9%) were treated by single crown, which accounted for the majority. 4, The total implant survival rate was 100% after a mean follow-up period of 21.2 months. This preliminary data with ITl $TE^{(R)}$ implant showed excellent survival rate although the majority of implants evaluated in this study were placed in the posterior region of the jaw and compromised sites.

Effect of remifentanil on pre-osteoclast cell differentiation in vitro

  • Jeon, Hyun-Ook;Choi, In-Seok;Yoon, Ji-Young;Kim, Eun-Jung;Yoon, Ji-Uk;Cho, Ah-Reum;Kim, Hyung-Joon;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Background: The structure and function of bone tissue is maintained through a constant remodeling process, which is maintained by the balance between osteoblasts and osteoclasts. The failure of bone remodeling can lead to pathological conditions of bone structure and function. Remifentanil is currently used as a narcotic analgesic agent in general anesthesia and sedation. However, the effect of remifentanil on osteoclasts has not been studied. Therefore, we investigated the effect of remifentanil on pre-osteoclast (pre-OCs) differentiation and the mechanism of osteoclast differentiation in the absence of specific stimulus. Methods: Pre-OCs were obtained by culturing bone marrow-derived macrophages (BMMs) in osteoclastogenic medium for 2 days and then treated with various concentration of remifentanil. The mRNA expression of NFATc1 and c-fos was examined by using real-time PCR. We also examined the effect of remifentanil on the osteoclast-specific genes TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. Finally, we examined the influence of remifentanil on the migration of pre-OCs by using the Boyden chamber assay. Results: Remifentanil increased pre-OC differentiation and osteoclast size, but did not affect the mRNA expression of NFATc1 and c-fos or significantly affect the expression of TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. However, remifentanil increased the migration of pre-OCs. Conclusions: This study suggested that remifentanil promotes the differentiation of pre-OCs and induces maturation, such as increasing osteoclast size. In addition, the increase in osteoclast size was mediated by the enhancement of pre-OC migration and cell fusion.

THE USE OF DISTRACTION OSTEOGENESIS TO TREAT HEMIFACIAL MICROSOMIA: A CASE REPORT (반안면 왜소증 환자에서의 골신장술: 증례보고)

  • Baik, Sung-Mun;Kim, Su-Gwan;Kim, Hak-Kyun;Moon, Seong-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.559-566
    • /
    • 2007
  • Distraction osteogenesis(DO) is a surgical method of bone formation that involves an osteotomy and sequential stretching of the healing callus by gradual movement and subsequent remodeling. DO is used to correct facial asymmetry, such as in patients with hemifacial microsomia, maxillary or mandibular retrusion, cleft lip and palate, alveolar defects, and craniofacial deficiency. It is accomplished with the aid of a distraction device, which is secured with screws placed directly into bone, for a predetermined length of time. Hemifacial microsomia is characterized by unilateral facial hypoplasia, often with unilateral shortening of the mandible and subsequent malocclusion. Patients with hemifacial microsomia and facial asymmetry have a vertically short maxilla, tilted occlusal plane, and short mandible. Early treatment is necessary to avoid subsequent impaired midfacial growth. The standard treatment of these malformations consists of the application of bone grafts, which can lead to unpredictable growth. The new bone-lengthening procedure represents a limited surgical intervention and opens up a new perspective for treatment, especially in younger children with severe deformities. This report describes a case of hemifacial microsomia(Type-II left-sided hemifacial microsomia). The patient, a 10-year-old child, visited our clinic for facial asymmetry correction. He had a hypoplastic mandible, displaced ear lobe, 10 mm canting on the right side, and malocclusion. We planned DO to lengthen the left mandible in conjunction with a Le Fort I osteotomy for decanting and then perform a right intraoral vertical ramus osteotomy(IVRO). Progressive distraction at a rate of 0.5 mm/12 hours was initiated 7 days postoperatively. The duration of DO was 17 days. The consolidation period was 3 months. Satisfactory results were obtained in our case, indicating that DO can be used successfully for functional, aesthetic reconstruction of the mandible. We report a case involving DO in conjunction with orthognathic surgery for correcting mandibular hypoplasia with a review of the literature.

Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo

  • Kim, Jinhee;Lee, Hyejin;Kang, Ki Sung;Chun, Kwang-Hoon;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.46-53
    • /
    • 2015
  • Background: Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods: MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Realtime polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion: The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis.

Three Dimensional Printing Technique and Its Application to Bone Tumor Surgery (3차원 프린팅 기술과 이를 활용한 골종양 수술)

  • Kang, Hyun Guy;Park, Jong Woong;Park, Dae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.466-477
    • /
    • 2018
  • Orthopaedics is an area where 3-dimensional (3D) printing technology is most likely to be utilized because it has been used to treat a range of diseases of the whole body. For arthritis, spinal diseases, trauma, deformities, and tumors, 3D printing can be used in the form of anatomical models, surgical guides, metal implants, bio-ceramic body reconstruction, and orthosis. In particular, in orthopaedic oncology, patients have a wide variety of tumor locations, but limited options for the limb salvage surgery have resulted in many complications. Currently, 3D printing personalized implants can be fabricated easily in a short time, and it is anticipated that all bone tumors in various surgical sites will be reconstructed properly. An improvement of 3D printing technology in the healthcare field requires close cooperation with many professionals in the design, printing, and validation processes. The government, which has determined that it can promote the development of 3D printing-related industries in other fields by leading the use of 3D printing in the medical field, is also actively supporting with an emphasis on promotion rather than regulation. In this review, the experience of using 3D printing technology for bone tumor surgery was shared, expecting orthopaedic surgeons to lead 3D printing in the medical field.

Change of Proton Bragg Peak by Variation of Material Thickness in Head Phantom using Geant4 (Geant4 전산모사를 이용한 두개골 팬텀의 물질 두께 변동에 따른 양성자 브래그 피크의 위치 변화)

  • Kim, You Me;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2021
  • Proton therapy using the Bragg peak is one of the radiation therapies and can deliver its maximum energy to the tumor with giving least energy for normal tissue. A cross-sectional image of the human body taken with the computed tomography (CT) has been used for radiation therapy planning. The HU values change according to the tube voltage, which lead to the change in the boundary and thickness of the anatomical structure on the CT image. This study examined the changes in the Bragg peak of the brain region according to the thickness variation in the head phantom composed of several materials using the Geant4. In the phantom composed of a single material, the Bragg peak according to the type of media and the incident energy of the proton beams were calculated, and the reliability of Geant4 code was verified by the Bragg peak. The variation of the peak in the brain region was examined when each thickness of the head phantom was changed. When the thickness of the soft tissue was changed, there was no change in the peak position, and for the skin the change in the peak was small. The change of the peak position was mainly changed when the bone thickness. In particular, when the bone was changed only or the bone was changed together with other tissues, the amount of change in the peak position was the same. It is considered that measurement of the accurate bone thickness in CT images is one of the key factors in depth-dose distribution of the radiation therapy planning.

Usefulness of $^{18}F$-Fluoride PET/CT in Bone Metastasis of Prostate Cancer (전립선암 환자의 뼈 전이에 대한 $^{18}F$-Fluoride PET/CT의 유용성)

  • Park, Min-Soo;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 2009
  • Purpose: Today, Prostate cancer has been gradually increasing, according to the change of internal incidence rate of cancer. Generally, prostate cancer has lead to dead over 90%, in case of metastasis of lymph node and bone. So, innovative development of new radiopharmaceutical and imaging modality is progressed for detection of that metastasis, in nuclear medicine, now. Therefore, this study shows the usefulness of $^{18}F$-Fluoride PET/CT improved diagnosability on bone metastasis of prostate cancer. Materials and Methods: In this study, 33 male patients with prostate cancer were examined (The mean age: $67.8{\pm}10.2$ years old). Every patient was done each whole body bone scan (WBBS) and $^{18}F$-Fluoride positron emission tomography/computed tomography ($^{18}F$-Fluoride PET/CT). And then, using Receiver Operating Characteristic Curve (ROC curve), each sensitivity and specificity of two modalities was measured and compared with. Results: In 22 patients (66.6%) of all, bone metastasis was detected. And, in WBBS, sensitivity was 63.6%, specificity, 81.8%; in $^{18}F$-Fluoride PET/CT, sensitivity was 100% and specificity was 90.9%. As a result of ROC curve, AUROC (The Area under an ROC) of WBBS was 0.778, and that of $^{18}F$-Fluoride PET/CT, 0.942. Conclusions: $^{18}F$-Fluoride PET/CT was higher both sensitivity and specificity than WBBS, and it was valuable to detect bone metastasis of prostate cancer more definitely, with 3D imaging realization. Also, in $^{18}F$-Fluoride PET/CT, physiological images were acquired in more short time than WBBS, so, it was possible to reduce patient's waiting time and complaint. Therefore, it is considered that $^{18}F$-Fluoride PET/CT is able to improve diagnosability by offering more accurate images, as cuts in a share of high cost.

  • PDF

Chemical Properties and Assessment of Immunomodulatory Activities of Extracts isolated from Broccoli (브로콜리로부터 분리한 추출물의 In vitro 면역증진 활성평가 및 화학적 특성)

  • Kwak, Bong-Shin;Park, Hye-Ryung;Lee, Sue Jung;Choi, Hyuk-Joon;Shin, Kwang-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1140-1148
    • /
    • 2017
  • For the purpose of developing new immunomodulatory agents from broccoli, ethanol extract (BCEE), hot water extract (BCHW), and crude polysaccharide (BCCP) were isolated from broccoli, and their immunomodulatory activities and chemical properties were examined. In the in vitro cytotoxicity analysis, BCHW and BCCP did not affect the growth of tumor cells and normal cells. Murine peritoneal macrophages stimulated with BCCP showed higher production of IL-6, IL-12, and $TNF-{\alpha}$ cytokines than those stimulated with BCHW. Also, BCHW and BCCP did not show proliferation of splenic lymphocytes. In the in vitro assay for intestinal immunomodulatory activities, only BCCP enhanced GM-CSF secretion and the bone marrow cell-proliferating activity via cells in Peyer's patches at $1,000{\mu}g/mL$. Also, BCHW mainly contained 33.7% neutral sugars, such as arabinose, glucose, and galactose, and 30.7% uronic acid, and BCCP consisted of 42.6% neutral sugars, including arabinose, galactose, and glucose, and 50.5% uronic acid. The above results lead us to conclude that crude polysaccharide (BCCP) isolated from broccoli causes considerably high cytokine production in peritoneal macrophages and bone marrow cell proliferation, and the polysaccharide extraction process is indispensable for separation of new immunomodulatory agents from broccoli.

Trace Mineral Nutrition in Poultry and Swine

  • Richards, James D.;Zhao, Junmei;Harrell, Robert J.;Atwell, Cindy A.;Dibner, Julia J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1527-1534
    • /
    • 2010
  • Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.