• Title/Summary/Keyword: bone collagen synthesis

Search Result 76, Processing Time 0.025 seconds

Measuring in vivo Rate of Bone Collagen Synthesis in Growing Rats (성장기 흰쥐의 골조직 Collagen 생성속도 측정)

  • 김유경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1390-1393
    • /
    • 2003
  • Measuring in vivo rate of bone collagen synthesis has so far been technically difficult and often subject to quite large errors. In the present study, bone collagen synthesis rate was measured using a precursor-product method, based on the exchange of $^2$$H_2O$ into amino acids. Mass isotopomer abundance in hydroxyproline from bone collagen was analyzed by gas chromatography/mass spectrometry. The $^2$$H_2O$ labeling protocol consisted of an initial intraperitoneal injection of 99.9% $^2$$H_2O$, to achieve approximately 2.5% body water enrichment followed by administration of 4% $^2$$H_2O$ in drinking water for 9 weeks. Body $^2$$H_2O$ enrichments were stable at 2.7 ∼ 3.0% over labeling Period. In growing rats, the fractional synthesis rate ( $k_{s}$) of bone collagen was 0.066 $\pm$ 0.049 w $k^{-1}$ . The unique features of stable $^2$$H_2O$ pools and label incorporation allowed the precursor-product approach to be used for measuring bone collagen synthesis rate..

Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

  • Seo, Hyun-Ju;Cho, Young-Eun;Kim, Tae-Wan;Shin, Hong-In;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.4 no.5
    • /
    • pp.356-361
    • /
    • 2010
  • Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentrations of zinc (0, 1, 3, 15, 25 uM) along with a normal osteogenic medium (OSM) as control for 1, 5, 10 days. As measured by MTT assay for mitochondrial metabolic activity, cell proliferation was stimulated even at low zinc treatment (1-3 ${\mu}M$) compared to OSM, and it was stimulated in a zinc concentration-dependent manner during 5 and 10 days, with the most pronounced effect at 15 and 25 uM Zn. Cellular (synthesized) alkaline phosphatase (ALP) activity was increased in a zinc concentration-dependent manner, so did medium (secreted) ALP activity. Cellular collagen concentration was increased by zinc as time went by, therefore with the maximum zinc stimulatory effect in 10 days, and medium collagen concentration showed the same pattern even on 1 and 5 day. This zinc stimulatory effect of collagen synthesis was observed in cell matrix collagen staining. The study results imply that zinc can increase osteogenic effect by stimulating cell proliferation, ALP activity and collagen synthesis in osteoblastic cells.

The Effects of Rosiglitazone on in vivo Synthesis of Bone Collagen in Mice (Rosiglitazone이 마우스의 골조직 Collagen생성에 미치는 영향)

  • 김유경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.218-221
    • /
    • 2004
  • This study was performed to investigate the effect of rosiglitazone, a new antidiabetic agent, on in vivo synthesis of bone collagen. The mice were divided into low-fat diet group (LF), high-fat diet group (HF), and high-fat diet with rosiglitazone (6.3 $\mu\textrm{g}$/kcal diet) group (HF-Rosi), The synthesis of bone collagen was measured by stable isotope-mass spectrometric technique using $^2$$H_2O$ as a tracer. The $^2$$H_2O$ labeling protocol consisted of an initial intraperitoneal injection of 99.9% $^2$$H_2O$, to achieve approximately 2.5% body water enrichment followed by administration of 4% $^2$$H_2O$ in drinking water for 3 weeks. Although body weight gain and daily diet intake were not significantly different between groups, HF-Rosi had slightly higher body weight gain and daily diet intake than LF and HF. In addition, HF-Rosi showed significantly higher body fat content than LF and HF. Bone collagen synthesis was reduced in HF than LF and further decreased by the treatment of rosiglitazone. These results suggest rosiglitazone affect body fat content and bone turnover in mice.

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis (골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향)

  • Choi, Won Il;Han, Seung-Kyu;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Effect of Hormone Replacement Therapy on the Change of Pyridinoline from Bone and Cartilage Collagen of Ovariectomized Rats (호르몬 투여가 난소를 절제한 흰쥐의 골단백질 성숙에 미치는 영향)

  • 김미향;유리나;하배진;김상애;고진복
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.475-479
    • /
    • 1997
  • A decrease in the circulating levels of estrogen, occuring as a consequence of post menopausal decline or from surgical ovariectomy, results in an accelerated loss of bone. Estrogen has been shown to stimulate lysyl oxidase activity, and the treatment with estrogen increased the pyridinium content of cortical bone. a trivalent mature cross-links collagen fibrils named pyridinoline, which is especially abundant in collagen of cartilage and bone, markedly increases with growth in humans and rats. The main aim of this study was to examine the increased bone loss caused by ovariectomy through monitoring the concentrations of the collagen and the pyridinium cross-links of collagen, pyridinoline. The ovariectomized rats, 4 weeks old, were divided at random into two or three groups of 5. Ovariectomies were carried out on both of the saline-treated group(OVX(NH)) and the estrogen-treated group(OVX(H)) using the dorsal approach and sham operations were performed on the sham-operated group(sham). They were maintained under identical conditions for 4 or 8 weeks and were allowed free access to food and water. it was observed that there was no significant difference between the control group and the sham-operated group, however, the control group had a higher content of collagen than the saline-treated group after 4 weeks and 8 weeks. Based on these results, iot is supposed that estrogen can enhance collagen synthesis and affects the pyridinoline formation in collagen fibrils through stimulating lysyl oxidase activity.

  • PDF

Comparison of Human Bone Marrow Stromal Cells with Fibroblasts in Cell Proliferation and Collagen Synthesis (골수기질세포와 섬유아세포의 세포 증식과 교원질 합성능 비교)

  • Han, Seung-Kyu;Yoon, Tae-Hwan;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.343-346
    • /
    • 2005
  • It has been established that a graft of fibroblasts is able to improve wound healing. However, there has been no research on the effect of a graft of bone marrow stromal cells on wound healing. The wound healing process requires cell proliferation and production of extracellular matrix and various growth factors. The purpose of this study was to compare the abilities of human fibroblasts and bone marrow stromal cells, which contains mesenchymal stem cells, to proliferate and to produce collagen. Human bone marrow stromal cells and fibroblasts were isolated from bone marrow and dermis of the same patients and grown in culture respectively. Cell proliferation and production of type I collagen by human bone marrow stromal cells and dermal fibroblasts were examined by MTT method and by ELISA of cell culture media on day 1, 3, and 5 days post-incubating. The human bone marrow stromal cells showed 11-17% higher cell proliferation than fibroblasts at each time interval. The levels of type I collagen in the human bone marrow stromal cell group was also significantly higher than those in the fibroblast group. The results indicate that the grafts of human bone marrow stromal cells can show more promising effect than that of fibroblasts for healing of chronic wounds.

Anti-Aging Effects of the Hanwoo Leg Bone, Foot and Tail Infusions (HLI, HFI and HTI) on Skin Fibroblast

  • Seol, Ja young;Yoon, Ji Young;Jeong, Hee Sun;Joo, Nami;Choi, Soon Young
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.237-243
    • /
    • 2016
  • Many researchers revealed that collagen contribute to maintaining the skin’s elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.

Regulation of bone formation by high glucose in PDL cells

  • Jung, In-Ok;Zhang, Cheng-Gao;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.80-80
    • /
    • 2003
  • Insulin-dependent or Type 1 diabetes mellitus (IDDM) has been associated with an increased severity of periodontal disease. Since periodontal ligament (PDL) cells play a significant role in maintenance and regeneration of mineralized tissue, the success of procedures, such as guided tissue regeneration, is directly related to the ability of these cells to augment mineralized tissue. In this study, we investigated the time- and dose-dependent effect of high glucose on the proliferation and collagen synthesis of human periodontal ligament (PDL) cells. PDL cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of PDL cells as a time- and dose-dependent manner as evidenced by MTT assay. PDL cells were cultured in high glucose media (22mM, 33mM, 44mM) for 24 h. The ratio of collagen content to total protein was evaluated, and the gene expression of type I collagen was assessed by RT - PCR. The high concentration of glucose inhibited collagen synthesis, a marker of bone formation activity. This study indicated high glucose concentration could alter the metabolism of periodontal ligament cell, leading to alveolar bone destruction.

  • PDF

Effect of Chondroitin Sulfate on Collagen Maturity and Agning (Chondroitin Sulfate가 Colagen 성숙과 노화에 미치는 영향)

  • 하배진;김미향
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 1999
  • The purpose of this study was to examine the increased bone loss caused by ovariectomy through monitoring the concentrations of the collagen and the pyridinoline crosslinks of collagen. The ovariectomized rats treated for 8 weeks, were divided at random into two or three groups of 10. Ovariectomies were carried out from the saline-treated group (Ovx), the estrogentreated group (Ovx+ES) and chondroitin sulfate-treated group (Ovx+CS). Sham operations were performed on the sham-operated group (Sham). Ovx+ES and Ovx+CS groups showed the remarkably increased collagen and pyridinoline amount in the bone and cartilage compared to Ovx group. And as the result of the measurement of SOD, Catalase and GPx which are antioxidant enzyme, SOD and Catalase activities in Ovx group were much higher than in Sham group. But they were significantly decreased in Ovx+CS group. Based on these results, it is supposed that estrogen and condroitin sulfate can enhance collagen synthesis and affect the pyridinoline formation in collagen fibrils through stimulating lysyl oxidase activity. And it is also thought that chondroitin sulfate can inhibit aging by reducing antioxidant enzyme.

  • PDF