• 제목/요약/키워드: bone biomechanics

검색결과 97건 처리시간 0.024초

Modeling free vibration analysis of osteon as bone unite

  • Ebrahimi, Farzad;Zokaee, Farin
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigated vibrational behavior of the osteon as bone unit in the different situations. This study can lead to increase our knowledge of our body. In this paper free vibration of the osteon with considering it as composite material has been studied. The effect of numbers of lamellae and radius of those on natural frequency of osteon are subtle; while thickness of lamellae have decreasing trend on natural frequency of osteon. The presence of nerve and blood in haversian canal change trend of natural frequency, absolutely. Using the nonlocal strain gradient theory(NSGT) leads to effectiveness of scale parameter on equations of motion and the obtained results. The governing equations are derived by Hamilton's principles. A parametric study is presented to examine the effect of various parameters on vibrational behaviour of osteon. The results can also be regarded as a benchmark in vibration analysis behavior of osteon as bone unite.

상악동 골이식술과 하악지 자가골 블록을 이용한 상악 구치부 치조제 수직증강술 (SINUS GRAFT AND VERTICAL AUGMENTATION OF MAXILLARY POSTERIOR ALVEOLAR RIDGE USING MANDIBULAR RAMAL BLOCK BONE GRAFT)

  • 김경원;이은영
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권3호
    • /
    • pp.276-281
    • /
    • 2010
  • The maxillary posterior area is the most challenging site for the dental implant. After missing of teeth on maxillary posterior area due to periodontal problems, the remaining alveolar ridge is usually very thin because of not only pneumatization of maxillary sinus but also destruction of alveolar bone. The maxillary sinus bone graft procedure is one of the most predictable and successful treatments for the rehabilitation of atrophic and pneumatized endentulous posterior maxilla. But, in case of severe destruction of alveolar bone due to periodontal problems, very long crown length is still remaining problem after successful sinus graft procedures. We performed vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft. After this procedures, we could get more favorable crown-implant ratio of final prosthodontic appliance and more satisfactory results on biomechanics. This is a preliminary report of the vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft, so requires more long-term follow up and further studies.

Repeatable calibration of Hounsfield units to mineral density and effect of scanning medium

  • Crookshank, Meghan;Ploeg, Heidi-Lynn;Ellis, Randy;MacIntyre, Norma J.
    • Advances in biomechanics and applications
    • /
    • 제1권1호
    • /
    • pp.15-22
    • /
    • 2014
  • Computed tomography (CT) is being utilized in orthopaedics and related research to estimate bone strength. These applications benefit from calibration of Hounsfield units to mineral density typical of long bone, up to $1750mg/cm^3$. This study describes a method for establishing repeatable calibration of Hounsfield units to density, and determines the effects of imaging medium on calibration accuracy. Four hydroxyapatite standards were imaged in air on 7 occasions over 19 weeks using a helical multi-slice CT scanner. Each standard was scanned 5 times in different media: porcine soft tissue, water, and air. Calibrated densities were highly repeatable (CV<3.5%). No difference in density was observed between water and soft tissue conditions (p>0.08). This work provides a model for determining repeatable scanner-specific density calibration, demonstrates that the linear relationship between Hounsfield units and density extends to values typical of cortical bone, and supports the practice of imaging calibration standards in an environment similar to that of the target bone.

Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap

  • Mukherjee, Kaushik;Gupta, Sanjay
    • Advances in biomechanics and applications
    • /
    • 제1권2호
    • /
    • pp.95-109
    • /
    • 2014
  • Peri-acetabular bone ingrowth plays a crucial role in long-term stability of press-fit acetabular cups. A poor bone ingrowth often results in increased cup migration, leading to aseptic loosening of the implant. The rate of peri-prosthetic bone formation is also affected by the polar gap that may be introduced during implantation. Applying a mechano-regulatory tissue differentiation algorithm on a two-dimensional plane strain microscale model, representing implant-bone interface, the objectives of the study are to gain an insight into the process of peri-prosthetic tissue differentiation and to investigate its relationship with implant-bone relative displacement and size of the polar gap. Implant-bone relative displacement was found to have a considerable influence on bone healing and peri-acetabular bone ingrowth. An increase in implant-bone relative displacement from $20{\mu}m$ to $100{\mu}m$ resulted in an increase in fibrous tissue formation from 22% to 60% and reduction in bone formation from 70% to 38% within the polar gap. The increase in fibrous tissue formation and subsequent decrease in bone formation leads to weakening of the implant-bone interface strength. In comparison, the effect of polar gap on bone healing and peri-acetabular bone ingrowth was less pronounced. Polar gap up to 5 mm was found to be progressively filled with bone under favourable implant-bone relative displacements of $20{\mu}m$ along tangential and $20{\mu}m$ along normal directions. However, the average Young's modulus of the newly formed tissue layer reduced from 2200 MPa to 1200 MPa with an increase in polar gap from 0.5 mm to 5 mm, suggesting the formation of a low strength tissue for increased polar gap. Based on this study, it may be concluded that a polar gap less than 0.5 mm seems favourable for an increase in strength of the implant-bone interface.

Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis

  • Ali, Benouis;Boualem, Serier;Smail, Benbarek
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권4호
    • /
    • pp.197-206
    • /
    • 2015
  • This paper presents three-dimensional finite element method analyses of the distribution of equivalents stress of Von Mises. Induced around a cavity located in the bone cement polymethylmethacrylate (PMMA). The presences and effect of its position in the cement was demonstrated, thus on the stress level and distribution. The porosity interaction depending on their positions, and their orientations on the interdistances their mechanical behaviour of bone cement effects were analysed. The obtained results show that micro-porosity located in the proximal and distal zone of the prosthesis is subject to higher stress field. We show that the breaking strain of the cement is largely taken when the cement, containing the porosities very close adjacent to each other.

Biomechanical Finite Element Analysis of Bone Cemented Hip Crack Initiation According to Stem Design

  • Kim, Byeong-Soo;Moon, Byung-Young;Park, Jung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2168-2177
    • /
    • 2006
  • The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.

치밀골의 탄성 텐서 요소 경계 (The bounds for the elasticity tensor components of cortical bone)

  • 윤원석;윤영준
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-59
    • /
    • 2012
  • 뼈는 미네랄과 콜라겐으로 이루어진 복합 재료이고 횡방성 대칭의 역학적인 성질을 갖는다. 뼈의 유효 탄성 상수를 찾기 위해서는 복합재료역학에서 경계조건을 사용하여 그 값을 예측하고 있다. 그 방법들 중 하나인 보이트-로이스 경계조건은 근사값을 이용해서 유효 탄성 계수를 추정하는 방법이다. 기존의 방법은 고유값의 경계조건에 관한 경계조건을 보이지만, 이번 연구에서 우리는 수학적으로 이 경계조건이 각각의 탄성계수에 관해서 성립함을 보였다.

Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects

  • Mobasseri, Saleh;Sadeghi, Mehdi;Janghorban, Maziar;Tounsi, Abdelouahed
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.25-35
    • /
    • 2020
  • We carry the knowledge that the skeleton bones of the human body are not always without defects and some various defects could occur in them. In the present paper, as the first endeavor, free vibration and buckling analysis of femur bones with femoral defects are investigated. A major strength of this study is the modeling of defects in femur bones. Materialise Mimics software is adopted to model the bone geometry and the SOLIDWORKS software is used to generate the defects in bones. Next, the ABAQUS software is employed to study the behaviors of bones with defects.

Analysis of the hematopoiesis process in mammalian bone using homotopy perturbation method

  • Akano, Theddeus T.;Nwoye, Ephraim O.;Adeyemi, Segun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제5권1호
    • /
    • pp.51-64
    • /
    • 2020
  • In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work compared very well with the numerical solutions from published literature. This work has shown that the HPM is viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells were also determined through the underlined procedure.

Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권4호
    • /
    • pp.237-244
    • /
    • 2018
  • Objective: Flat-footed people struggle with excessive ankle joint motion during walking and running. This study aimed to investigate the effects of customized three-dimensional 3D-printed insoles on the kinematics of flat-footed people during daily activities (walking and running). Method: Fifteen subjects (height, $169.20{\pm}2.61cm$; age, $22.87{\pm}8.48years$; navicular bone height, $13.2{\pm}1.00mm$) diagnosed with flat feet in a physical examination participated in this study. Results: The customized 3D-printed insoles did not significantly affect 3D ankle joint angles under walking and running conditions. However, they shifted the trajectory of the center of pressure (COP) laterally during fast walking, which enhanced the load distribution on the foot during the stance phase. Conclusion: The customized 3D-printed insoles somewhat positively affected the pressure distribution of flat-footed people by changing the COP trajectory. Further research including comparisons with customized commercial insoles is needed.