DOI QR코드

DOI QR Code

Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects

  • Mobasseri, Saleh (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Sadeghi, Mehdi (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Janghorban, Maziar (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2018.06.29
  • Accepted : 2020.03.12
  • Published : 2020.03.25

Abstract

We carry the knowledge that the skeleton bones of the human body are not always without defects and some various defects could occur in them. In the present paper, as the first endeavor, free vibration and buckling analysis of femur bones with femoral defects are investigated. A major strength of this study is the modeling of defects in femur bones. Materialise Mimics software is adopted to model the bone geometry and the SOLIDWORKS software is used to generate the defects in bones. Next, the ABAQUS software is employed to study the behaviors of bones with defects.

Keywords

References

  1. Amanatullah, D.F., Williams, J.C., Fyhrie, D.P. and Tamurian, R.M. (2014), "Torsional properties of distal femoral cortical defects", Orthopedics., 37(3), 158-162. https://doi.org/10.3928/01477447-20140225-51.
  2. Anderson, D.E. and Madigan, M.L. (2013), "Effects of age-related differences in femoral loading and bone mineral density on strains in the proximal femur during controlled walking", J. Appl. Biomech., 29(5), 505-516. https://doi.org/10.1123/jab.29.5.505.
  3. Belaid, D., Germaneau, A., Bouchoucha, A., Bremand, F., Breque, C., Rigoard, P. and Vendeuvre, T. (2017), "Finite element analysis of mechanical behavior of stabilization techniques for tibial plateau fractures", Comput. Meth. Biomech. Biomed. Eng., 20(S1), 13-14. http://dx.doi.org/10.1080/10255842.2017.1382837.
  4. Bhardwaj, A., Gupta, A. and Tse, K.M. (2014'), "Mechanical response of femur bone to bending load using finite element method", 2014 Recent Advances in Engineering and Computational Sciences (RAECS), 1-4.
  5. Campion, D., Dakhil, N., Llari, M., Evin, M., Mo, F., Thefenne, L. and Behr, M. (2017), "Finite element model of a below-knee amputation: a feasibility study", Comput. Meth. Biomech. Biomed. Eng., 20(S1), 35-36. http://dx.doi.org/10.1080/10255842.2017.1382848.
  6. Coquim, J., Clemenzi, J., Salahi, M., Sherif, A., Tavakkoli Avval, P., Shah, S., Schemitsch, E.H., Bagheri, Z.S., Bougherara, H. and Zdero, R. (2018), "Biomechanical analysis using FEA and experiments of metal plate and bone strut repair of a femur midshaft segmental defect", BioMed Res. Int., 2018, Article ID 4650308, 11. https://doi.org/10.1155/2018/4650308.
  7. El Sallah, Z.M., Smail, B., Abderahmane, S., Bouiadjra, B.B. and Boualem, S. (2016), "Numerical simulation of the femur fracture under static loading", Struct. Eng. Mech., 60(3), 405-412. http://dx.doi.org/10.12989/sem.2016.60.3.405.
  8. Geraldes, D.M. and Phillips, A.T. (2014), "A comparative study of orthotropic and isotropic bone adaptation in the femur", Int. J. Numer. Meth. Biomed. Eng., 30(9), 873-889. https://doi.org/10.1002/cnm.2633.
  9. Gupta, A. and Tse, K. (2014), "Vibration analysis of femur bone using Elmer", J. Eng. Sci. Technol, Speial Issue on ICMTEA Conference, December.
  10. Haider, I.T., Speirs, A.D. and Frei, H. (2013), "Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength", J. Biomech., 46(13), 2115-2121. https://doi.org/10.1016/j.jbiomech.2013.07.004.
  11. Hambli, R. (2014), "3D finite element simulation of human proximal femoral fracture under quasi-static load", Adv Bioeng Appl., 1(1), 1-14. https://doi.org/10.12989/aba.2013.1.1.001.
  12. Hodgskinson, R. and Currey, J. (1992), "Young's modulus, density and material properties in cancellous bone over a large density range", J. Mater. Sci.: Mater. Medicine., 3(5), 377-381. https://doi.org/10.1007/BF00705371.
  13. Huang, B., Chang, C., Wang, F., Lin, A., Tsai, Y., Huang, M. and Tseng, J. (2012), "Dynamic characteristics of a hollow femur", Life Sci. J., 9(1), 723-726.
  14. Jade, S. (2012), "Finite element analysis of a femur to deconstruct the design paradox of bone curvature", Masters Theses, University of Massachusetts Amherst.
  15. Kumar, A., Garg, T. and Patil, P.P. (2014), "Free vibration modes analysis of femur bone fracture using varying boundary conditions based on FEA", Procedia Mater. Sci., 6, 1593-1599. https://doi.org/10.1016/j.mspro.2014.07.142.
  16. Ma, L., Zhou, Y., Zhang, Y., Zhou, X., Yao, Z., Huang, W., Qiao, G. and Xia, H. (2014), "Biomechanical evaluation with finite element analysis of the reconstruction of femoral tumor defects by using a doublebarrel free vascularized fibular graft combined with a locking plate", Int. J. Clinic. Exper. Medicine., 7(9), 2425.
  17. Mahmoud, S.R., Tounsi, A., Ali, A.T. and Al-Basyouni, K.S. (2014), "The effect of initial stress and magnetic field on wave propagation in human dry bones", Bound. Value Prob., 2014(1), 135. https://doi.org/10.1186/1687-2770-2014-135.
  18. Mow, V.C., Ateshian, G.A. and Spilker, R.L. (1993), "Biomechanics of diarthrodial joints: a review of twenty years of progress", J. Biomech. Eng., 115(4B), 460-467. https://doi.org/10.1115/1.2895525.
  19. Nishiyama, K.K., Gilchrist, S., Guy, P., Cripton, P. and Boyd, S.K. (2013), "Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration", J. Biomech., 46(7), 1231-1236. https://doi.org/10.1016/j.jbiomech.2013.02.025.
  20. Sadeghi, R., Bakhtiari-Nejad, F. and Goudarzi, T. (2018'), "Vibrational analysis of human femur bone", ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
  21. San Antonio, T., Ciaccia, M., Muller-Karger, C. and Casanova, E. (2012), "Orientation of orthotropic material properties in a femur FE model: A method based on the principal stresses directions", Med. Eng. Phys., 34(7), 914-919. https://doi.org/10.1016/j.medengphy.2011.10.008.
  22. Sivakumar, V. (2013), "Non-linear 3D finite element analysis of the femur bone".
  23. Taylor, W., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M., Hobatho, M., Rakotomanana, L. and Clift, S. (2002), "Determination of orthotropic bone elastic constants using FEA and modal analysis", J. Biomech., 35(6), 767-773. https://doi.org/10.1016/S0021-9290(02)00022-2.
  24. Tse, K.M., Tan, L.B., Lim, S.P. and Lee, H.P. (2015), "Conventional and complex modal analyses of a finite element model of human head and neck", Comput. Meth. Biomech. Biomed. Eng., 18(9), 961-973. https://doi.org/10.1080/10255842.2013.864641.
  25. Voo, L., Armand, M. and Kleinberger, M. (2004), "Stress fracture risk analysis of the human femur based on computational biomechanics", Johns Hopkins APL Tech Dig., 25(3), 223-230.
  26. Yosibash, Z., Mayo, R.P. and Milgrom, C. (2014), "Atypical viscous fracture of human femurs", Adv. Biomech. Appl., 1(2), 77-83. https://doi.org/10.12989/aba.2014.1.2.077