• 제목/요약/키워드: bonding technology

검색결과 1,569건 처리시간 0.027초

Roadmap toward 2010 for high density/low cost semiconductor packaging

  • Tsukada, Yutaka
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 한국마이크로전자및패키징학회 1999년도 1st Korea-Japan Advanced Semiconductor Packaging Technology Seminar
    • /
    • pp.155-162
    • /
    • 1999
  • A bare chip packaging technology by an encapsulated flip chip bonding on a build-up printed circuit board has emerged in 1991. Since then, it enabled a high density and low cost semiconductor packaging such as a direct chip bonding on mother board and high density surface mount components, such as BGA and CSP. This technology can respond to various requirements from applications and is considered to take over a main role of semiconductor packaging in the next decade.

  • PDF

p-contact resistivity influence on device-reliability characteristics of GaN-based LEDs (p-contact 저항에 따른 GaN기반 LED의 device-reliability 특성)

  • Park, Min-Jung;Kim, Jin-Chul;Kim, Sei-Min;Jang, Sun-Ho;Park, Il-Kyu;Park, Si-Hyun;Cho, Yong;Jang, Ja-Soon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.159-159
    • /
    • 2010
  • We conducted bum-in test by current stress to evaluate acceleration reliability characteristics about p-resistivity influence of GaN-based light-emitting diodes. The LEDs used in this study are the polarization field-induced LED(PF-LED) having low p-resistivity and the highly resistive LED(HR-LED) having high p-resistivity. The result of high stress experiment shows that current crowding phenomenon is occurred from the center of between p-bonding pad and n-bonding pad to either electrodes. In addition, series resistance and optical power decrease dramatically. These results means that the resistance of between p-bonding pad and p-GaN affect reliability. That's why we need to consider the ohmic contact of p-bonding pad when design the high efficiency and high reliability LEDs.

  • PDF

Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique (3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징)

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jong Cheol;Na, Ye Eun;Kim, Tae Hyun;Noh, Kil Son;Sim, Gap Seop;Kim, Ki Hoon
    • Journal of Sensor Science and Technology
    • /
    • 제29권5호
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

A Bonding Surface Behavior of Bi-metal Bar through Hydrostatic Extrusion (이중복합봉 정수압 압출시 접합면 거동에 관한 연구)

  • Park, Hun-Jae;Na, Gyeong-Hwan;Jo, Nam-Seon;Lee, Yong-Sin
    • Transactions of Materials Processing
    • /
    • 제7권1호
    • /
    • pp.66-71
    • /
    • 1998
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminium bar to investigate the bonding conditions as well as the basic flow characteristics. Considering the bonding mechanism of bi-metal contact surface as cold pressure welding the normal pressure and the contact surface expansion are selected as process parameters governing the bonding conditions, in this study the critical normal pressure required for the local extrusion-the protrusion of virgin surfaces by the surface expansion at the interface-is obtained using a slip line method and is then used as a criteron for the bonding. A rigid plastic finite element method is used to analyze the steady state extrusion process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-process. The interface profile of bi-metal rod is predicted by tracking the paths of two particles adja-cent to interface surface. The contact surface area ration and the normal pressure along the interface are calculated and compared to the critical normal pressure to check bonding. It is found that the model predictions are generally in good agreement with the experimental observations. The compar-isons of the extrusion pressure and interface profile by the finite element with those by experi-ments are also given.

  • PDF

Flexural Behavior of iFLASH System with No Blast Metal Cleaned Steel Plates (비표면처리 강판을 사용한 iFLASH 시스템의 휨성능 평가)

  • Kim, Yong-Yeal;Ryu, Jaeho;Yoon, Sung-Won;Ju, Young K.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • 제6권4호
    • /
    • pp.30-37
    • /
    • 2015
  • iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.

Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires (구리-타이타늄 복합선재의 번들압출 성형특성)

  • Lee, Y.S.;Kim, J.S.;Yoon, S.H.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • 제18권4호
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

Observation of the Castability and Bonding Strength of a Co-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Co-Cr합금의 주조성 및 결합강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young;Kim, Kap-Jin
    • Journal of Technologic Dentistry
    • /
    • 제35권2호
    • /
    • pp.105-112
    • /
    • 2013
  • Purpose: This study was to analyze the castability, surface oxide characteristic of Co-Cr alloy for porcelain fused to metal crown and the bonding strength of porcelain fused to metal crown. Co-Cr and Ni-Cr alloy for porcelain fused to metal crown was used for tests of the castability and surface oxide state and shear bonding strength by various porcelain. The aim of this study was to suggest the differences of result according to Co-Cr and Ni-Cr alloy. Methods: The kinds of alloy as test specimen was Co-Cr and Ni-Cr alloy. The castability index on the alloy specimens. The surfaces of two alloys were analyzed by SEM and EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The castability index of Co-Cr alloy was 96.8% and Ni-Cr alloy was 94.4%. The strongest bonding strength of Co-Cr alloy was shown 67.37 MPa. Conclusion: The shear bonding strength between Co-Cr alloy and EX3 porcelain was the strongest comparing with others. And all of each alloy was indicated as same level about the castability.

Investigating the Cause of Hindrance to the Interfacial Bonding of INCONEL 718 Layer Deposited by Kinetic Spray Process (저온 분사 공정을 이용해 적층된 INCONEL 718의 계면접합 저해요인 분석)

  • Kim, Jaeick;Lee, Seungtae;Lee, Changhee
    • Journal of the Korean institute of surface engineering
    • /
    • 제48권6호
    • /
    • pp.275-282
    • /
    • 2015
  • The cost for maintenance (replacement cost) of Ni-superalloy components in plant industry is very expensive because of high unit price of INCONEL 718. A development of repairing technology using kinetic spray process can be very helpful for reducing the maintenance cost. However, it is very difficult to produce well-deposited INCONEL 718 layer showing high interfacial bond strength via kinetic spraying. Thus, INCONEL 718 was deposited on SCM 440 substrate and the interfacial properties were investigated, in order to elucidate the cause of hindrance to the bonding between INCONEL 718 layer and SCM 440 substrate. As a result, it was revealed that the dominant obstacle to the interfacial bonding was excessive compressive residual stress accumulated in the coating layer, resulting from low plastic-deformation susceptibility of INCONEL 718. Nevertheless, the bonding state was enhanced by the post heat-treatment through relieving the residual stress and generating a diffusion/metallurgical bonding between the INCONEL 718 deposit and SCM 440 substrate.

Effect of Surface Condition on the Bonding Characteristics of 3Y-$ZrO_2$-Metal Bracket System (3Y-$ZrO_2$ 세라믹과 교정용 브라켓계에서 세라믹의 표면 조건에 따른 접착 거동의 변화)

  • O, Seon-Mi;Kim, Jin-Seong;Lee, Chae-Hyun
    • Journal of Technologic Dentistry
    • /
    • 제33권1호
    • /
    • pp.47-54
    • /
    • 2011
  • Purpose: To investigate shear bonding strength between dental zirconia ceramics with different surface treatment and metal bracket. Methods: Zirconia ceramics(LAVA, 3M ESPE, USA) were divided to 4 groups according to their surface treatment; no surface treatment(G1), sand blasting(G2), silane coating(G3), and sand blasting+silane coating(G4). Specimens were bonded to metal bracket using resin bond($Transbond^{TM}XT$, 3M Unitek, USA). Shear bond strength was measured using universal test machine(3366 INSTRON. U.S.A) with cross head speed of 1 mm/min. Microstructural investigation for fracture surface was performed after shear test. Results: Shear bonding strengths of single surface treatment groups (G2 and G3) were higher than no treatment group(G1). Combined Treatment Group (G4) showed the highest shear bond strength of 9.15MPa. Microstructural observation shows that higher shear bonding strength was obtained when debonding was occurred at metal bracket/resin interface rather than zirconia ceramic/resin interface. Conclusion: Surface treatment of zirconia is necessary to obtain higher bonding strength. Combined treatment can be more effective when surface the surfaces are kept clean and homogeneous.

Observation of Shear Bonding Strength by Compositional Change and Firing Steps of the Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr합금의 조성변화와 소성단계에 따른 전단결합강도)

  • Cho, Yong-Wan;Hong, Min-Ho;Kim, Won-Young;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • 제35권4호
    • /
    • pp.353-358
    • /
    • 2013
  • Purpose: This study was observation shear bonding strength by compositional change and firing step of a Ni-Cr alloy for porcelain fused metal crown. The aim of study was to suggest the material for firing step of Ni71-Cr14 alloy to development of alloy for porcelain fused to metal crown. Methods: The test was on the two kinds of Ni-Cr alloy specimens. The surfaces of two alloys were analyzed by EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{14}$ alloy measured 23.32wt%, and $Ni_{59}Cr_{24}$ alloy was measured 23.03wt%. And the maximum shear bonding strength was measured 58.02MPa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H4 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H4 specimens.