• 제목/요약/키워드: bonding stress

검색결과 447건 처리시간 0.03초

접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구 (Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints)

  • 김문찬;홍기섭
    • 한국전산구조공학회논문집
    • /
    • 제35권1호
    • /
    • pp.15-22
    • /
    • 2022
  • 본 논문에서는 유한요소해석을 통한 모듈러 구조물 접합부의 힌지접합부 연구에 관하여 소개한다. 모듈러 구조물은 모듈과 모듈을 적층하는 방식으로 공사를 진행하여 단위 모듈간의 기둥 및 보의 일체성을 기대하기 어려운 특성을 가지고 있다. 그러나 현 모듈러 설계 시 이러한 구조적 특성을 무시하고 횡력에 대한 모멘트전달을 고려하여 기존 강구조와 동일한 방식으로 해석하고 있다. 더구나 모멘트접합을 체결하기위해 모듈러 외부뿐만 아니라 내부에서 볼트 체결이 이루어져 조립 후 마감을 추가하는 불합리한 상황도 발생한다. 이러한 일체성을 기대하기 어려운 특성을 고려하기 위하여 힌지접합을 활용한 모듈러구조시스템을 제안하였다. 논문에서는 기존의 모멘트접합부에서 힌지접합부로 변경하였을 때 하중의 전달을 확인하기 위하여 이전 다른 연구에서 활용되었던 가위 모델을 변형한 변형 가위 모델을 고안하여 접합부의 기본 이론을 제안·검토하였고, 기본을 바탕으로 계산된 결과는 구조해석 프로그램인 마이다스 젠과 비교하여 검증하였다. 추가적으로 기존 모멘트접합부로 설계되었던 모듈러구조물을 힌지접합부로 변경하여 부재내력 및 사용성을 검토하였다.

외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정 (Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets)

  • 최은수;이영근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권2호통권54호
    • /
    • pp.215-222
    • /
    • 2009
  • 콘크리트 공시편의 외부보강을 위해서 강판과 FRP 자켓을 이용하였다. 기존의 강판 또는 FRP 자켓 보강기법은 보강재와 콘크리트 사이에 접착제를 이용하여 시공하므로 콘크리트와 보강재가 합성거동 하게 된다. 그러나 본 연구에서 사용한 강판 보강기법은 외부압착에 의한 기법으로 강판과 콘크리트가 합성거동을 하지 않는다. 본 연구에서는 비합성거동과 합성거동을 하는 보강된 콘크리트 시편의 압축 변형률의 측정과 이를 보정하는 기법을 제시하였다. 비합성거동의 강판보강 콘크리트 시편의 압축변형률 측정은 강판의 표면에서 변형률을 측정하여 표시할 수 없으며, 시편에 설치하여 측정하는 compressometer를 사용할 수도 없었다. 따라서 시편의 상하단에 두꺼운 판을 설치하여 두 판사이의 변형을 측정한 후. 이를 압축변형률로 변환하였다. 합성 거동을 하는 FRP 보강의 경우는 FRP 튜브 표면에서 측정되는 수직방향의 변형률을 콘크리트의 압축변형률로 사용이 가능하다. 그러나 튜브 표면의 수직변형률은 시편의 부풀음에 의한 인장변형률이 포함되어 있기 때문에 콘크리트의 압축변형률을 추정하기 위해서는 이를 보정하여야 한다. 보정된 압축변형률은 콘크리트 내부에서 측정한 변형률과 기존의 콘크리트 연속체 모델과 비교하였을 때, 만족한 결과를 보였다. 보정 전의 응력-변형률 곡선은 콘크리트의 연성거동 및 에너지 소산능력을 보정 전에 비해 낮게 평가할 위험성이 있다.

수종의 밴드 접착 시멘트의 물성에 대한 비교 연구 (COMPARATIVE STUDY OF PHYSICAL PROPERTIES FOR VARIOUS BAND CEMENTS)

  • 양규호;김기백;김선미;최남기
    • 대한소아치과학회지
    • /
    • 제36권3호
    • /
    • pp.427-432
    • /
    • 2009
  • 본 연구의 목적은 시중에 유통되고 있는 밴드 시멘트들을 종류별로 이용하여 교정용 밴드의 결합강도를 비교하고, 각 시멘트의 파절 양상을 비교하여 교정용 밴드에 대한 사용지침을 마련하는데 도움이 되고자 하였다. 100개의 발거된 인간의 제 3대구치를 이용해 실험군은 총 5개의 군으로 하였으며, 각 군당 시편수가 20개가 되도록 임의적으로 분류하였다. 실험에 사용한 밴드 시멘트는 다음과 같다; Ormco gold, Ultra $Band-Lok^{TM}$, Fuji $Ortho^{TM}$ LC, 3M $Unitek^{TM}$ Multi-Cure Glass Ionomer, $Ketac-Cem^{TM}$. Universal testing machine(Instron Corp., Canton, MA, USA)를 사용하여 최대하중값을 측정하였고, 전단결합강도 값을 계산하였다. 밴드가 탈락한 후, 탈락 부위를 평가하여 법랑질과 시멘트, 시멘트와 밴드 사이로 구분하였다. 밴드의 전단강도는 One-way ANOVA를 이용하여 통계처리 하였으며 Tukey test를 이용하여 검정하였다. 또한 탈락 부위는 Chi-squre analysis를 이용하여 통계 처리하였고, Fisher's exact test로 군간 유의성을 검정하였다. 실험 결과 평균 파절 강도는 Ormco군이 가장 높았고(2.44${\pm}$0.57), Fuji $Ortho^{TM}$군(2.24${\pm}$0.50), $Ketac-Cem^{TM}$군(2.10${\pm}$0.57), 3M $Unitek^{TM}$군(1.82${\pm}$0.43), $Band-Lok^{TM}$군(1.73${\pm}$0.28) 순이었으며, Ormco군은 $Band-Lok^{TM}$군과 3M $Unitek^{TM}$군, Fuji $Ortho^{TM}$군은 $Band-Lok^{TM}$군과만 통계적으로 유의할만한 차이를 보였다(p<0.05). 파절 양상에서 Ormco군과 $Band-Lok^{TM}$군은 서로뿐만 아니라 다른 군과 유의할만한 차이를 보였으며, Fuji $Ortho^{TM}$, 3M $Unitek^{TM}$, $Ketac-Cem^{TM}$ 군 간에는 유의한 차이가 없었다.

  • PDF

터널형 2급와동 충전재의 탄성계수와 전단결합강도 및 수복치의 변연융선 파절강도에 관한 연구 (ELASTIC CONSTANTS, SHEAR BOND STRENGTH OF TUNNEL RESTORATIVE MATERIALS AND MARGINAL RIDGE STRENGTH OF RESTORED TEETH)

  • 이가연;박영준;양규호
    • 대한소아치과학회지
    • /
    • 제23권3호
    • /
    • pp.746-763
    • /
    • 1996
  • An alternative design to conventional class II cavity preparation for proximal carious lesions is the tunnel preparation. It preserves the marginal ridge intact, thus making it possible to maintain the natural contact relationship with the adjacent tooth and minimize tooth reduction. This in vitro study was purposed to evaluate the effect of the materials' elastic constants and shear-bond strength on the marginal ridge fracture resistance of teeth restored by the tunnel technique, and to find the materials of choice for tunnel restorations. $Resinomer^{(R)}$, $Ketac-silver^{(R)}$, $Miracle-Mix^{(R)}$, and Tytin were used as restorative material. The elastic constants of each restorative material were evaluated by ultrasonic pulse measurement. Young's modulus and bulk modulus of the restorative materials were evaluated in three specimens for each material type. The shear-bond strength of the restorative materials to the dentin surface was measured after thermocycling 400 times between 6 and $60^{\circ}C$, using ten specimens for each material type. For measuring marginal ridge strength, 60 sound extracted molar teeth were distributed into six groups by size. Sound molar teeth were used as a Control group and unfilled prepared teeth were grouped as Unrestored. Another four groups were named Resinomer group, Ketac-Silver group, Miracle Mix group, and Tytin group by type of restorative material. Tunnel cavity preparation was done with ' 1/2, 2, and 4 round burs in sequence. Initial access to proximal surface was made through an occlusal access preparation started at least 2mm from the marginal ridge, and the proximal opening was formed about 2.5mm below the marginal ridge. After restoration and thermocycling, marginal ridge strength was measured using a universal testing machine. The results were as follows: 1. The Young's modulus of $Tytin^{(R)}$ was 63.95 GPa, followed by $Ketac-Silver^{(R)}$ 27.60 GPa, $Miracle-mix^{(R)}$ 18.48 GPa, and $Resinomer^{(R)}$ 10.74 GPa showing significant differences between the groups(P<0.05). The bulk modulus of the materials showed the same order as Young's modulus. The value of $Tytin^{(R)}$ showed 59.57 GPa indicating that it will deform less than other materials under the same stress. It was followed by $Ketac-Silver^{(R)}$ 23.57 GPa, Miracle $Mix^{(R)}$ 12.50 GPa, and $Resinomer^{(R)}$ 11.60 GPa. 2. The Resinomer group had a shear-bond strength of 7.41 MPa which was significantly higher than those of the Ketac-Silver group (1.80 MPa) and the Miracle Mix group (2.84 MPa) (P<0.01). All the specimens of Tytin group detatched from the dentin surface during thermocycling. 3. The mean marginal ridge strength of the Unrestored group(46.14 kgf) was significantly lower than that of the Control group (84.24 kgf) (P<0.01). The marginal ridge strength of teeth restored by the tunnel technique was, in order, Ketac-Silver group 74.06 kgf, Miracle Mix group 73.36 kgf, Resinomer group 63.47 kgf, and Tytin group 58.76 kgf. The Ketac-Silver, Miracle Mix, and Resinomer groups showed no significant difference with the Control group (P>0.05), but the Tytin group showed significantly lower strength compared to the Control group(P<0.05). The results showed that the marginal ridge strength of the teeth restored by the tunnel technique was not significantly lower than that of sound teeth. They also demonstrated that the bonding strength of the restorative material to the tooth surface should be high and the modulus of elasticity should not be lower than that of the tooth in order to restore the marginal ridge strength to its natural condition.

  • PDF

에폭시 수지 모르터의 특성에 관한 실험적 연구 (Experimental Studies on the Properties of Epoxy Resin Mortars)

  • 연규석;강신업
    • 한국농공학회지
    • /
    • 제26권1호
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

Flowable Composite Resin의 미세변연누출 및 전단결합강도 (MICROLEAKAGE AND SHEAR BOND STRENGTH OF FLOWABLE COMPOSITE RESIN)

  • 박성준;오명환;김오영;이광원;엄정문;권혁춘;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.332-340
    • /
    • 2001
  • Flowable composite resin has lower filler content, increased flow, and lower modules of elasticity. It is suggested that flowable composite resin can be bonded to the tooth structure intimately and absorb or dissipate the stress. Therefore, it may be advantageous to use flowable composite resin for the base material of class II restoration and for the class V restoraton. The purpose of this study was to evaluate the microleakage and shear bond strength of four flowable composite resins (Aeliteflo, Flow-It, Revolution, Ultraseal XT Plus) compared to Z100 using Scotchbond Multi Purpose dentin bonding system. To evaluate the microleakage, notch-shaped class V cavities were prepared on buccal and lingual surfaces of 80 extracted human premolars and molars on cementum margin. The teeth were randomly divided into non-thermocycling group (group 1) and thermocycling group (group 2) of 40 teeth each. The experimental teeth of each group were randomly divided onto five subgroups of eight samples (sixteen surfaces). The Scotchbond Multi-Purpose and composite resin were applied for each group following the manufacturer's instructions. the teeth of group 2 were thermocycled five hundred times between 5$^{\circ}C$ and 55$^{\circ}C$. The teeth of group 2 were placed in 2% methylene blue dye for 24 hours, then rinsed with tab water. The specimens were embedded in clear resin, and sectioned longitudinally with a diamond saw. The dye penetration on each of the specimen were observed with a stereomicioscope at $\times$20 magnification. To evaluate the shear bond strength, 60 teeth were divided into five groups of twelve teeth each. The experimental teeth were ground horizontally below the dentinoenamel junction, so that no enamel remained. After applying Scotchbond Multi-Purpose on the dentin surface, composite resin was applied in the shape of cylinder. The cylinder was 4mm in diameter and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. After shear bond strength measurement, mode of failure was evaluated with a stereomicroscope at $\times$30 magnification. All data were statistically analyzed by One Way ANOVA and Student-Newman-Keuls method. The correlation between microleakage and shear bond strength was analyzed by linear regression. The results of this study were as follows ; 1. In non-thermocycling group, the leakage value of Z100 was significantly lower than those of flowable composite resins at the enamel and dentin margin, margin, except that Revolution showed the lower leakage value than that of Z100 at the dentin margin (p<0.05). 2. In thermocycling group, the leakage values of Z100 and Ultraseal XT Plus were lower than those of other subgroup at the enamel and dentin margin, except that Flow-It showed the lower leakage value than that of Ultraseal XT Plus at the dentin margin (p<0.05). 3. The leakage value of Z100 and Ultraseal XT Plus in thermocycling group were not higher than that in non-thermocycling group at the enamel margin. The leakage value of Z100 in thermocycling group was not higher than that in non-thermocycling group at the dentin margin (p<0.05). 4. As for the shear bond strength measurement, there were no statistically significant differences among groups (p<0.05). The shear bond strengths given in descending order were as follows: Z100(16.81$\pm$2.98 MPa), Flow-It(14.8$\pm$4.43 MPa), Aeliteflo(14.34$\pm$3.69 MPa), Revolution(13.46$\pm$4.23 MPa), Ultraseal XT Plus(12.83$\pm$3.16 MPa). 5. Failure modes of all specimens were adhesive failures. 6. There was no correlation between microleakage and shear bond strength.

  • PDF

와동의 형태가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향 (THE INFLUENCE OF CAVITY CONFIGURATION ON THE MICROTENSILE BOND STRENGTH BETWEEN COMPOSITE RESIN AND DENTIN)

  • 김예미;박정원;이찬영;송윤정;서덕규;노병덕
    • Restorative Dentistry and Endodontics
    • /
    • 제33권5호
    • /
    • pp.472-480
    • /
    • 2008
  • 이 실험의 목적은 동일한 깊이의 상아질에서 제 6세대의 self-etching system을 사용하여 C-factor가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향을 알아보는 것이다. 건전한 대구치 80개를 선정하여 와동의 바닥면적은 각각 $16mm^2$로 동일하게 하고 깊이를 조절하여 C-factor가 각각 0.25, 2, 3, 4인 4개의 군으로 나누었다. 각 군별로 총 20개의 치아를 할당하였으며 접착제와 복합레진의 조합에 따라 다시 4개의 소군에 치아 5개씩을 배정하였다 상아질 접착제는 AQ Bond Plus 또는 Xeno III를 사용하였고, 복합레진은 fantasists 또는 Ceram-X mono를 사용하였다. 제조사의 지시대로 상아질 접착제를 도포한 후 60초간 광중합하였다. 24시간 동안증류수에 보관후 단면적이 $1.0{\times}1.0mm^2$인 복합레진-상아질 beam을 형성하여 1mm/min의 속도로 미세 인장결합강도를 측정하였다. One-way ANOVA와 Tukey test, 그리고 Pearson correlation test로 통계 처리하여 다음과 같은 결과를 얻었다. 1. XenoIII와 Ceram-X mono군에서는 C-factor가 증가할수록 미세 인장결합강도가 유의하게 감소했으나 (p<0.05), 나머지 재료군에서 C-factor군간에 미세 인장결합강도의 유의한 차이가 없었다. 2. C-factor 3군에서는 Ad Bond Plus와 Fantasista군이 Xeno III와 Ceram-X mono군에 비해 높은 결합력을 보였으나 (p<0.05), C-factor 0.25군, 2군, 4군에서 4가지 접착제와 수복 레진의 조합 간에 유의한 차이가 없었다. 3. Fantasista군에서 C-factor와 미세 인장결합강도 사이에 일정한 상관관계를 발견할 수 없었고, Ceram-X mono군에서 C-factor가 증가할수록 미세 인장결합강도가 감소하는 경향을 보였다 (p<0.05). 이번 연구의 결과로 상아질의 깊이가 동일하고 6세대의 self-etching system을 사용하여 복합레진을 충전하는 경우 와동의 C-factor가 수복물의 미세 인장결합강도에 크게 영향을 미치지 않음을 알 수 있었다.