• Title/Summary/Keyword: bonding properties

Search Result 1,392, Processing Time 0.029 seconds

Effect of Interfacial Bonding on Piezoresistivity in Carbon Nanotube and Reduced Graphene Oxide Polymer Nanocomposites (탄소나노튜브 및 환원된 산화그래핀과 고분자간 계면결합력이 나노복합재의 압전 거동에 미치는 영향)

  • Hwang, Sang-Ha;Kim, Hyeon-Ju;Sung, Dae-Han;Jung, Yeong-Tae;Kang, Ku-Hyek;Park, Young-Bin
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.137-144
    • /
    • 2012
  • Chemical functionalization of carbon nanomaterials (CNMs) is generally carried out for increasing interfacial adhesion between filler and polymer matrix for CNM-polymer nanocomposites. The chemically functionalized CNTs can produce strong interfacial bonds with many polymers, allowing CNT based nanocomposites to possess high mechanical and functional properties. Hence, increased surface adhesion can be measured indirectly by observing increased mechanical properties. However, there is a more direct way to observe interfacial bonds between polymer and CNM by measuring piezoresistivity behavior so that we can imagine the behavior of CNM particles in polymer matrix under deflection. Fuctionalization of MWCNT and rGO was carried out by oxidization reaction of MWCNT and rGO with $H_2SO_4/HNO_3$ solution. Electrical resistivities of MWCNT-PMMA and rGO-PMMA composites were decreased after functionalization because of the destructive fuctionalization process. Meanwhile, piezoresistivities of functionalized CNM-PMMA composites showed more sensitive behavior under the same deflection as compared to pristine CNM-PMMA composites. Therefore, mobility of CNM in polymer matrix was found to be improved with chemical functionalization.

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

Tribological study on the thermal stability of thick ta-C coating at elevated temperatures

  • Lee, Woo Young;Ryu, Ho Jun;Jang, Young Jun;Kim, Gi Taek;Deng, Xingrui;Umehara, Noritsugu;Kim, Jong Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.144.2-144.2
    • /
    • 2016
  • Diamond-like carbon (DLC) coatings have been widely applied to the mechanical components, cutting tools due to properties of high hardness and wear resistance. Among them, hydrogenated amorphous carbon (a-C:H) coatings are well-known for their low friction properties, stable production of thin and thick film, they were reported to be easily worn away under high temperature. Non-hydrogenated tetrahedral amorphous carbon (ta-C) is an ideal for industrial applicability due to good thermal stability from high $sp^3$-bonding fraction ranging from 70 to 80 %. However, the large compressive stress of ta-C coating limits to apply thick ta-C coating. In this study, the thick ta-C coating was deposited onto Inconel alloy disk by the FCVA technique. The thickness of the ta-C coating was about $3.5{\mu}m$. The tribological behaviors of ta-C coated disks sliding against $Si_3N_4$ balls were examined under elevated temperature divided into 23, 100, 200 and $300^{\circ}C$. The range of temperature was setting up until peel off observed. The experimental results showed that the friction coefficient was decreased from 0.14 to 0.05 with increasing temperature up to $200^{\circ}C$. At $300^{\circ}C$, the friction coefficient was dramatically increased over 5,000 cycles and then delaminated. These phenomenon was summarized two kinds of reasons: (1) Thermal degradation and (2) graphitization of ta-C coating. At first, the reason of thermal degradation was demonstrated by wear rate calculation. The wear rate of ta-C coatings showed an increasing trend with elevated temperature. For investigation of relationship between hardness and graphitization, thick ta-C coatings(2, 3 and $5{\mu}m$) were additionally deposited. As the thickness of ta-C coating was increased, hardness decreased from 58 to 49 GPa, which means that graphitization was accelerated. Therefore, now we are trying to increase $sp^3$ fraction of ta-C coating and control the coating parameters for thermal stability of thick ta-C at high temperatures.

  • PDF

Comparison of Retention of Calcium Carbonate and Mechanical and Optical Properties of Sheets in Various Retention System (여러 가지 보류시스템에서 탄산칼슘의 보류와 종이의 기계적·광학적 특성의 비교)

  • Paik, Ki-Hyon;Ahn, Byoung-Jun;Shon, Sang-Don
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.315-320
    • /
    • 1996
  • In this paper, we investigated the retention amounts(ash contents) according to the addition amounts of retention aid and calcium carbonate and compared the mechanical and optical properties of sheets under the same ash content. As the addition amounts of retention aid increase, the retention of calcium carbonate, that is, ash contents of sheets increase in all retention system. In this case, the sheets included ash content as already expected is produced by adjusting the addition amounts of retention aid and calcium carbonate. Tensile index, burst index, tear index, internal bonding strength of sheets straightly decrease as the ash content of sheets increases. Especially, in the same ash content, all sorts of strength are high in compozil system, low in dual polymer system. Opacity increases along with according to the increase of ash content, and is high in hydrocol system, the worst in dual polymer system. In equal opacity, the strength of paper decreases compozil, hydrocol, and dual polymer system in order. But to judge she superiority or inferiority of retention aids, it should consider the various factors such as the optimum production and process conditions besides the retention amounts of filler and the sheet strength.

  • PDF

Spin and Pseudo Spins in Theoretical Chemistry. A Unified View for Superposed and Entangled Quantum Systems

  • Yamaguchi, Y.;Nakano, M.;Nagao, H.;Okumura, M.;Yamanaka, S.;Kawakami, T.;Yamaki, D.;Nishino, M.;Shigeta, Y.;Kitagawa, Y.;Takano, Y.;Takahata, M.;Takeda, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.864-880
    • /
    • 2003
  • A unified picture for magnetism, superconductivity, quantum optics and other properties of molecule-based materials has been presented on the basis of effective model Hamiltonians, where necessary parameter values have been determined by the first principle calculations of cluster models and/or band models. These properties of the matetials are qualitatively discussed on the basis of the spin and pseudo-spin Hamiltonian models, where several quantum operators are expressed by spin variables under the two level approximation. As an example, ab initio broken-symmetry DFT calculations are performed for cyclic magnetic ring constructed of 34 hydrogen atoms in order to obtain effective exchange integrals in the spin Hamiltonian model. The natural orbital analysis of the DFT solution was performed to obtain symmetry-adapted molecular orbitals and their occupation numbers. Several chemical indices such as information entropy and unpaired electron density were calculated on the basis of the occupation numbers to elucidate the spin and pair correlations, and bonding characteristic (kinetic correlation) of this mesoscopic magnetic ring. Both classical and quantum effects for spin alignments and singlet spin-pair formations are discussed on the basis of the true spin Hamiltonian model in detail. Quantum effects are also discussed in the case of superconductivity, atom optics and quantum optics based on the pseudo spin Hamiltonian models. The coherent and squeezed states of spins, atoms and quantum field are discussed to obtain a unified picture for correlation, coherence and decoherence in future materials. Implications of theoretical results are examined in relation to recent experiments on molecule-based materials and molecular design of future molecular soft materials in the intersection area between molecular and biomolecular materials.

Studies on Physical Properties and Potential as Coffee Filter Application for Hanji According to Different Contents of Paper Mulberry Fibers (핸드드립용 커피필터 제품을 위한 닥섬유 혼합 비율에 따른 한지의 물리적 특성 및 적용 가능성 평가)

  • Woo, HyunJeong;Ju, YongChan;Park, SeongCheol;Lim, HyunA;Lee, HyunHee;Choi, JungWook;Song, HyukHwan;Lee, YounSuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • The objective of this study was to evaluate the possibility for the coffee filter paper of Hanji. In this study, the samples for Hanji filter papers were prepared with three different mulberry fiber contents of 10, 30 and 50%(w/w). Surface brightness and apparent density of hand-made Hanji decreased with increasing mulberry fiber contents. However, values of thickness, tensile strength, wet tensile strength, burst strength, and folding endurance for hand-made Hanji increased by increasing the contents of mulberry fibers due to fiber-to-fiber bonding. The results of the coffee extraction test using the developed filter papers showed no significant differences between commercial filter paper and Hanji filter paper. Therefore, Hanji filter paper containing more than 30%(w/w) mulberry fiber may have potential uses for the dripped coffee filter application from a physical property point of view.

Mechanical Properties of Carbon Fiber/Si/SiC and Carbon Fiber/C/SiC Composites (탄소섬유/Si/SiC 및 탄소섬유/탄소/SiC 복합재의 기계적 물성)

  • 신동우;박삼식;김경도;오세민
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 1999
  • Carbon woven fabric/C/SiC composites were fabricated by multiple impregnations of carbon woven fabric/carbon preform with the polymer precursor of SiC, i.e., polycarbosilane. In addition, two kinds of low density carbon/carbon preforms which had different fiber volume fraction and fiber orientation, i.e., a carbon woven fabric(${\thickapprox}$55 vol%)/carbon and a chopped carbon fiber${\thickapprox}$40 vol%)/carbon composites, were reaction-bonded with a silicon melt at 1$700^{\circ}C$ in a vacuum to fabricate dense carbon fiber/Si/SiC composites. The reaction-bonding process increased the density to ~2.1 g/$cm^3$ from 1.6 g/$cm^3$ and 1.15 g/$cm^3$ of a carbon woven and a chopped carbon preforms, respectively. All of the composites fractured with extensive fiber pull-out. The higher the density the higher the stiffness and proportional limit stress. The mechanical properties obtained from a three-point bend and tension tests were compared. The ratios of the peak tensile stresses to the bending strengths of a carbon woven and a chopped carbon composites were about one-third, respectively. The carbon woven fabric/Si/SiC composites with density of 2.06 g/$cm^3$ showed ~120 MPa of ultimate strength and ~80 MPa of proportional limit in bend testing.

  • PDF

Reflow Behavior and Board Level BGA Solder Joint Properties of Epoxy Curable No-clean SAC305 Solder Paste (에폭시 경화형 무세정 SAC305 솔더 페이스트의 리플로우 공정성과 보드레벨 BGA 솔더 접합부 특성)

  • Choi, Han;Lee, So-Jeong;Ko, Yong-Ho;Bang, Jung-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • With difficulties during the cleaning of reflow flux residues due to the decrease of the part size and interconnection pitch in the advanced electronic devices, the need for the no-clean solder paste is increasing. In this study, an epoxy curable solder paste was made with SAC305 solder powder and the curable flux of which the main ingredient is epoxy resin and its reflow solderability, flux residue corrosivity and solder joint mechanical properties was investigated with comparison to the commercial rosin type solder paste. The fillet shape of the cured product around the reflowed solder joint revealed that the curing reaction occurred following the fluxing reaction and solder joint formation. The copper plate solderability test result also revealed that the wettability of the epoxy curable solder paste was comparable to those of the commercial rosin type solder pastes. In the highly accelerated temperature and humidity test, the cured product residue of the curable solder paste showed no corrosion of copper plate. From FT-IR analysis, it was considered to be resulted from the formation of tight bond through epoxy curing reaction. Ball shear, ball pull and die shear tests revealed that the adhesive bonding was formed with the solder surface and the increase of die shear strength of about 15~40% was achieved. It was considered that the epoxy curable solder paste could contribute to the improvement of the package reliability as well as the removal of the flux residue cleaning process.

Effects of Oxygen Functional Groups introduced onto Activated Carbon Fibers on Gas Sensing Property of Chemical Warfare Agent (활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향)

  • Kim, Su Hyun;Kim, Min-Ji;Song, Eun Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.719-725
    • /
    • 2019
  • In this study, activated carbon fibers were treated with oxygen plasma to investigate gas sensing properties of the dimethyl methylphosphonate (DMMP), which is a simulant gas of the chemical warfare agent, according to oxygen functional group contents. As the flow rate of oxygen plasma treatment increased, oxygen groups were introduced to the surface of activated carbon fibers from 6.90 up to 36.6%, increasing the -OH group which influences the DMMP gas sensing properties. However, as the flow rate of oxygen plasma increases, the specific surface area tends to decrease because etching on the surface of activated carbon fibers occurs due to active species generated during the oxygen plasma treatment. The resistance change rate of the DMMP gas sensor increased from 4.2 up to 25.1% as the oxygen plasma treatment flow rate increased. This is attributed to the hydrogen bonding between DMMP gas and introduced hydroxyl functional group on activated carbon fibers by the oxygen plasma treatment. Therefore, the oxygen plasma is considered to be one of the important surface treatment methods for detecting chemical warfare agents at room temperature.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.