• Title/Summary/Keyword: bonding mortar

Search Result 70, Processing Time 0.025 seconds

Bonding Strength of bonded Polymer Concrete on Cured Cement Concrete (경화된 콘크리트에 접착된 폴리머 콘크리트의 부착강도 특성)

  • 홍승호;권순민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.353-358
    • /
    • 2001
  • The cement concrete pavements are designed twenty years of performance life in Korea. At the present time, some expressways have been elapsed seventy percent of performance life which are detecting local failures. The most repair methods using to repair failures are partial depth repair and full section repair. These methods are most important bonding strength between rapid curing materials and substrate concrete pavements. This study was performed to evaluate bonding strength of the composites section made of rapid curing material and substrate concrete pavements. The pull-out tester was used to test bonding strength for the composites section made of each materials. In the results of the test, the bonding strength values of the epoxy mortar and acrylic mortar are higher than those of the other materials. The performance life of repaired section is affected by various factor. The bonding strength of bonded composites section may be affect the performance life, significantly.

  • PDF

An Experimental study on the Fundamental Properties of Restorative Mortar Spread with Liquefied Antibiotics for Repair of Sewer Concrete (액상 항균제를 도포한 단면복구용 모르타르의 기초물성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae Bong;Cho Bong-Suk;Kim Jae-Hwan;Lee Byoung-Ky;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.305-308
    • /
    • 2005
  • The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and disaggregation of concrete. The purpose of this study is to estimate the antibacterial performance of antibiotics and the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the fundamental properties of restorative mortar spead with antibiotics. Also, testing items such as bonding strength, abrasion contents, contents of water absorption, contents of air permeability was tested to estimate the fundamental properties in this study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And bonding strength of restorative mortar spread with antibiotics was similla to that of plain mortar. But, resistance to abrasion, water absorption and air permeability of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

Indoor and outdoor pullout tests for retrofit anchors in low strength concrete

  • Cavunt, Derya;Cavunt, Yavuz S.;Ilki, Alper
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • In this study, pullout capacities of post-installed deformed bars anchored in low strength concrete using different bonding materials are investigated experimentally. The experimental study was conducted under outdoor and indoor conditions; on the beams of an actual reinforced concrete building and on concrete bases constructed at Istanbul Technical University (ITU). Ready-mixed cement based anchorage mortar with modified polymers (M1), ordinary cement with modified polymer admixture (M2), and epoxy based anchorage mortar with two components (E) were used as bonding material. Furthermore, test results are compared with the predictions of current analytical models. Findings of the study showed that properly designed cement based mortars can be efficiently used for anchoring deformed bars in low quality concrete. It is important to note that the cost of cement based mortar is much lower with respect to conventional epoxy based anchorage materials.

Bond Properties of Polymer Cement Mortar to Reinforced Steel Bar (폴리머 시멘트 몰탈의 철근 부착특성 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.106-107
    • /
    • 2013
  • The purpose of this study is to characterize the bonding properties between reinforced bar and re-emulsion polymer cement mortar through the pull off test. The properties of polymer cement mortar before and after hardening were measured. Spiral reinforced steel bar was used to control the brittleness fracture of test specimens. In addition polymer content as experimental factors, the types of reinforced bar and corrosion were considered as well. Non linear FEM analysis was carried out to expect the behavior of bonding interface under the certain load.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

Anti-freezing effect of mortar surface with superhydrophobic water repellent (초소수성 발수제를 사용한 모르타르 표면의 결빙 방지 효과)

  • Kim, Sang-Jin;In, Byung-Eun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.15-16
    • /
    • 2022
  • In order to examine the adhesion characteristics of road pavement according to environmental conditions, the freezing time of cement mortar and the adhesion performance between ice and pavement were evaluated depending on the presence or absence of polymer and water repellent. As a result of measuring the ice formation time, it was found that there was no delay when a polymer was added, but the complete freezing time was delayed when a water repellent was added. As a result of measuring the strength of ice adhesion, it was found that the bonding force between ice and the surface of the test body was greatly generated in the test body without water repellent. In the case of a test specimen to which a water repellent was added, it was found that the bonding strength between the test specimen surface and ice was reduced.

  • PDF

A Study on Bond Properties of Plymer Cement Mortar (폴리머시멘트모르터의 부착특성에 관한 연구)

  • Park, Kyung-Sang;Lee, Woong-Jong;Chae, Jae-Hong;Lee, Jong-Ryul;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.203-208
    • /
    • 1999
  • The purpose of this study is to examine the bond properties of polymer cement mortar. Generally, cement mortar using polymer has been used that recovering the deteriorative concrete structure performance. In this case, it is very important problem to become a monolithic construction by bonding property. In this study, it is evaluated with other properties that adhesion strength between polymer cement mortar and concrete substrate. And polymer cement mortar was compared with plain cement mortar by scanning electron microscope.

  • PDF

Studies on Bond Properties of Repair Materials (보수.보강재료의 부착 특성에 관한연구)

  • 김진선;김경원;한만엽;정영수;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.293-298
    • /
    • 1995
  • This study experimentally evaluate the bonding performance of repair and strengthening materials. It is very important problem to justify bonding properties between repair and strengthening materials and old concrete. Many previous research and investigation showed that bonding strength of reinforcing materials determines the strengthening effect and the durability of repair work. Therefore, menifestation of bonding properties and the improvement of bonding performance of repair and strengthening materials are very important. In order to improve the perforamnce of repair work, it needs to investigate the behavior of bonding materials, such as stress distribution along the bonding area and the long term performance of the material. The target repair methods are steel plate addition technique and repair mortar method, and the test parameters studied in this paper include epoxy thickness, bonding surface texture, and bonding area.

  • PDF