• Title/Summary/Keyword: bonding glass

Search Result 429, Processing Time 0.033 seconds

Proton Conductivity of Niobium Phosphate Glass Thin Films

  • Kim, Dae Ho;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.308-314
    • /
    • 2018
  • Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.

AN EXPERIMENTAL STUDY ON THE BONDING FORCE OF GLASS IONOMER CEMENT (Glass Ionomer Cement의 접착력(接着力)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.7 no.1
    • /
    • pp.77-83
    • /
    • 1981
  • The purpose of this study was to observe the bonding strength between tooth surface (enamel and dentin) and restorative filling materials which are two composite resins (Clearfil and Concise) and Glass ionomer cement, after etching with 50% phoshoric acid and 37% citric acid. To measure the bonding strength in enamel, the labial surface of upper anterior tooth was cut flatly with using carborundum disk and polished with sand paper disk, and to measure in dentin, the dentin surface was prepared by grinding upper part of posterior tooth horizontally. After washing the tooth surface with water and drying with air blast, the prepared tooth surface was etched. In glass ionomer cement, 50% phosphoric acid and 37% citric acid were used, in Clearfil 40% phosphoric acid was used and in Concise, 50% phosphoric acid and 37% citric acid were used as etchant for 1 minute. After the copper band which is 5 mm in diameter and 5 mm in height was fixed on the prepared surface and each filling material was inserted into the copper band, the hooking loop was inserted into filled material in the copper band before setting to make it easily that the load is applied on the specimen. After all specimens were immersed in water at $37^{\circ}C$ for 1 week, this specimen was placed on the load cell of tensile test apparatus, and specimen was pulled at the cross-head speed of 0.8 mm per minute. The following results were obtained 1) In glass ionomer cement, the bond strength obtained by 37% citric acid was higher than one obtained by 50% phosphoric acid in enamel and dentin surfaces. The bond strength obtained in non-etched surface was much less than one by etchants in enamel and dentin surface. 2) In Clearfil, the bond strength obtained by 40% phosphoric acid was 4 times more than one obtained by non etch ant. 3) In Concise, the bond strength obtained by 50% phosphoric acid was almost same as one obtained by 37% citric acid, and the bond strength obtained by non etch ant was much less than one obtained by etchants.

  • PDF

Fabrication and Characteristics of Bioceramics for Artificial Dental Crowns (II) Mechanical Characteristics, Color and Color difference (인공치용 바이오 세라믹스의 제조 및 특성(II) 기계적 특성과 색도 및 색차변화)

  • 고영호;한복섭;이준희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1203-1211
    • /
    • 1995
  • The tests of three point bending and vickers hardness have been carried out to investigate mechanical characteristics of bioceramics for artificial dental crowns. And color and color difference test has been performed to study chromaticity changes after sintering specimens composited with glass and leucite powders. In addition, thermal dilation test has been carried out to examine bonding relations between dental porcelain and metal frame (Ni-Cr alloy). The result of three point bending test showed a maximum strength of about 68 MPa. Thermal expansion coefficient changed from 8.3$\times$10-6/$^{\circ}C$ to 13.5$\times$10-6/$^{\circ}C$ with increasing leucite content (0~30wt.%) in glass matrix. Bonding between porcelain (25% leucite-75% glass) and Ni-Cr alloy was excellent.

  • PDF

A study on the bonding Characteristics of Inorganic/Organic Composite by Measurement of the Glass Transition Temperature(Tg) (유리전이온도(Tg) 측정에 의한 무기/유기복합체의 결합특성에 관한 연구)

  • Lee, Dong-A;Kim, Goo-Dae;Kim, Hyun-Min
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.309-317
    • /
    • 1992
  • Inorganic/organic composite was synthesized by using sol-gel process, and the bonding characteristics of composite was investigated with glass transition temperature(Tg), measured by DMTA(Dynamic Mechanical Thermal Analyzer). It was found from shift of Tg to higher temperature that composite reaction was proceeded better with the amount of HCl and water. But Tg was not varied with reaction time.

  • PDF

Study on a New ACF Bonding Methods in LCD Module Using a High Power Diode Laser (다이오드레이저를 이용한 디스플레이 모듈 내 이방성 전도 필름(ACF) 접합 기술에 관한 연구)

  • Ryu K. H.;Seon M. H.;Nam G. J.;Kwak N. H.
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2005
  • A bonding process between tape-carrier package and a glass panel with anisotropic conductive film (ACF) has been investigated by making use of high power diode laser as a heat source for cure. The results from modeling of process and from optical properties of layers showed that heat absorbed from polyimide film surface and ACF layer is dominant source of curing during laser illumination. Laser ACF bonding has better bonding quality than conventional bonding in view of peel strength, flatness, pressure unbalance and processing time. New ACF bonding processes by making use of high power diode laser are proposed.

  • PDF

CHANGES OF MARGINAL ADAPTATION TO THE CAVITY FLOOR OF LIGHT-CURED GLASS IONOMER CEMENT BASE AFTER APPLICATION OF A COMPOSITE RESTORATION (복합레진 적용에 따른 광중합형 글라스아이오노머 시멘트의 변연 적합도의 변화)

  • Lee, Gye-Young;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.136-146
    • /
    • 1999
  • The purpose of this study was to estimate the changes of marginal adaptation to the cavity floor of light-cured glass ionomer cement base after application of a composite restoration. Eighty non-carious extracted human molars were used in the present study. Circular cavities were prepared on the center of the exposed dentin surface to 0.5mm, 1.0mm, 1.5mm, 2.0mm in depth and the prepared cavities were pretreated with Dentin conditioner and filled with Fuji II LC(GC Int. Co., Japan). They randomly assigned into 3 groups according to the difference in application of a composite restoration; Group 1(control group): only glass ionomer base, Group 2: The application of a composite restoration surrounded by dentin with class I cavity over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base, Group 3: The application of composite restoration not-surrounded by dentin over glass ionomer base after conventional dentin bonding to the exposed dentin and glass ionomer base. To examine the interface between cavity floor and light-cured glass ionomer cement base, each groups were sectioned vertically through the center of restorations with diamond saw and the gap size(${\mu}m$) of interface measured by SEM. The results were analyzed by using One Way ANOVA. The results were as follows: 1. Good adaptation between glass ionomer cement base and cavity floor was showed in specimens with 0.5mm, 1.0mm depth base of control group. But in specimens with 1.5mm, 2.0mm depth base of control group, the gap was measured about $15{\mu}m$, $40{\mu}m$ respectively. 2. Gap size in group 2 was significantly higher than that in control group(P<0.05). 3. Gap size in group 3 was significantly higher than that in control group and group 2(P<0.05). 4. It was possible to observe the good adaptation between glass ionomer cement base and dentin which was intermediated with 4-10${\mu}m$ hybrid layer in specimens with 0.5mm, 1.0mm depth base of control group. Cohesive fracture within cement base was observed in all specimens which had the gap between glass ionomer cement base & dentin. 5. It was possible to observe the gap formation between cement base and bonding agent and between composite resin and dentin in all specimens of group 2.

  • PDF

Sem Study of the Adhesion of New Glass Ionomer Cements to Dentin (글라스 아이오노모 시멘트의 상아질 접착에 관한 주사전자현미경적 연구)

  • Pak, Jay
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 1998
  • This study was performed to compare the bonding mechanism of glass ionomers. In this study, hybrid glass ionomers were used for restoration(Fuji II LC, GC, Japan) as the material of choice. Two different etching solutions were used in this study, 35% phosphoric acid and 10% polyacrylic acid. The effect of two different conditioners to dentin surface of a primary molar was studied and compared by using scanning electron microscope. Further, the interface of the dentin surface and the hybrid glass ionomers were examined.

  • PDF

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

Optimization of PMD(Pre-Metal Dielectric) Linear Nitride Process (PMD(Pre-Metal Dielectric) 선형 질화막 공정의 최적화)

  • Jeong, So-Young;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Lee, Chul-In;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.38-41
    • /
    • 2001
  • In this work, we have been studied the characteristics of each nitride film for the optimization of PMD(pre-metal dielectric) liner nitride process, which can applicable in the recent semiconductor manufacturing process. The deposition conditions of nitride film were splited by PO (protect overcoat) nitride, baseline, low hydrogen, high stress and low hydrogen, respectively. And also we tried to catch hold of correlation between BPSG(boro-phospho silicate glass) deposition and densification. Especially, we used FTIR area method for the analysis of density change of Si-H bonding and Si-NH-Si bonding, which decides the characteristics of nitride film. To judge whether the deposited films were safe or not, we investigated the crack generation of wafer edge after BPSG densification, and the changes of nitride film stress as a function of RF power variation.

  • PDF