• Title/Summary/Keyword: bonding agent

Search Result 339, Processing Time 0.024 seconds

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.

INFLUENCE OF REBONDING PROCEDURES ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS (복합레진 수복 시 재접착 술식이 미세누출에 미치는 영향)

  • Lee, Mi-Ae;Seo, Duck-Kyu;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.164-172
    • /
    • 2010
  • During a composite resin restoration, an anticipating contraction gap is usually tried to seal with low-viscosity resin after successive polishing, etching, rinsing and drying steps, which as a whole is called rebonding procedure. However, the gap might already have been filled with water or debris before applying the sealing resin. We hypothesized that microleakage would decrease if the rebonding agent was applied before the polishing step, i.e., immediately after curing composite resin. On the buccal and lingual surfaces of 35 extracted human molar teeth, class V cavities were prepared with the occlusal margin in enamel and the gingival margin in dentin. They were restored with a hybrid composite resin Z250 (3M ESPE, USA) using an adhesive AdperTM Single Bond 2 (3M ESPE). As rebonding agents, BisCover LV (Bisco, USA), ScotchBond Multi-Purpose adhesive (3M ESPE) and an experimental adhesive were applied on the restoration margins before polishing step or after successive polishing and etching steps. The infiltration depth of 2% methylene blue into the margin was measured using an optical stereomicroscope. The correlation between viscosity of rebonding agents and mciroleakage was also evaluated. There were no statistically significant differences in the microleakage within the rebonding procedures, within the rebonding agents, and within the margins. However, when the restorations were not rebonded, the microleakage at gingival margin was significantly higher than those groups rebonded with 3 agents (p < 0.05). The difference was not observed at the occlusal margin. No significant correlation was found between viscosity of rebonding agents and microleakage, except very weak correlation in case of rebonding after polishing and etching at gingival margin.

Strength Development of Sulfur-Polymer-Based Concrete Surface Protecting Agents Depending on Curing Condition and Hazard Assessment of Sulfur Polymers (유황폴리머를 활용한 콘크리트 표면보호재의 양생조건에 따른 강도 평가 및 유황폴리머의 유해성 평가)

  • Lee, Byung-Jae;Lee, Eue-Sung;Kim, Seung-Gu;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • The amount of by-product from sulphur increases in domestic industrial facilities. However, the amount of its consumption is limited so that the amount of unused sulphur continues to increase. Therefore, in this study, the use sulfur polymer as the concrete surface protecting material was conducted. The compressive strength showed that as the substitution ratio of filler increased up to 40%, the compressive strength also increased. A high compressive strength was shown at the curing temperature of $40^{\circ}C$ (SS, FA) and $60^{\circ}C$ (OPC) according to the type of filler. The difference of compressive strength between air dry curing and water curing was insignificant so that there was no significant influence of moisture during curing process. The evaluation result of bond strength showed that the highest bond strength was shown at the air-dry condition of $40^{\circ}C$ regardless of type of filler. Bonding didn't occur properly during water curing in comparison to air dry curing. Also, in case of the specimen cured at $60^{\circ}C$, discoloration and hair cracks appeared due to the influence of temperature, and the highest bond strength was shown at the substitution ratio of 20% (SS, FA) and 30% (OPC) according to the type of filler. The releasing test result of harmful substance showed that no harmful substance was released, so there is no harmfulness in the surface protecting material using sulfur polymer. As a conclusion drawn in this study, it is most appropriate to substitute silica by approximately 20%, mix and cure at the air-dry condition of $40^{\circ}C$ in order to use sulfur polymer as the surface protecting material.

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

THE INFLUENCE OF CAVITY CONFIGURATION ON THE MICROTENSILE BOND STRENGTH BETWEEN COMPOSITE RESIN AND DENTIN (와동의 형태가 상아질과 복합레진 사이의 미세인장결합강도에 미치는 영향)

  • Kim, Ye-Mi;Park, Jeong-Won;Lee, Chan-Young;Song, Yoon-Jung;Seo, Deok-Kyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.472-480
    • /
    • 2008
  • This study was conducted to evaluate the influence of the C-factor on the bond strength of a 6th generation self-etching system by measuring the microtensile bond strength of four types of restorations classified by different C-factors with an identical depth of dentin. Eighty human molars were divided into four experimental groups, each of which had a C-factor of 0.25, 2, 3 or 4. Each group was then further divided into four subgroups based on the adhesive and composite resin used. The adhesives used for this study were AQ Bond Plus (Sun Medical, Japan) and XenoIII (DENTSPLY, Germany). And composite resins used were fantasists (Sun Medical, Japan) and Ceram-X mono (DENTSPLY, Germany). The results were then analyzed using one-way ANOVA, a Tukey's test, and a Pearson's correlation test and were as follows. 1. There was no significant difference among C-factor groups with the exception of groups of Xeno III and Ceram-X mono (p<0.05). 2. There was no significant difference between any of the adhesives and composite resins in groups with C-factor 0.25, 2 and 4. 3. There was no correlation between the change in C-factor and microtensile bond strength in the Fantasista groups. It was concluded that the C-factor of cavities does not have a significant effect on the microtensile bond strength of the restorations when cavities of the same depth of dentin are restored using composite resin in conjunction with the 6th generation self-etching system.

Mechanical Properties of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 기계적 특성: 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Young;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.505-516
    • /
    • 2009
  • The effects of wood species, particle size of wood flours and coupling treatment on the mechanical properties of wood plastic composites (WPC) are investigated in this study. Chemical components of wood flour from 3 different wood species were analyzed by the chemical analysis. Wood flours of 40~60 mesh and 80~100 mesh were manufactured from Larix (Larix kaempferi Lamb.), Quercus (Quercus accutisima Carr.), and Maackia (Maackia amuresis Rupr. et Maxim). The wood flours were reinforced into polypropylene (PP) by melt compounding and injection molding, then tensile, flexural, and impact strength properties were analyzed. The order of alpha-cellulose content in wood is Quercus (43.6%), Maackia (41.3%) and Larix (36.2%). The order of lignin content in wood is Larix (31.6%), Maackia (24.7%), and Quercus accutisima (24.4%). The content of extractives in wood is in the order of Larix (8.5%), Maackia (4.4%), and Quercus accutisima (3.9%). As the content of alpha-cellulose increases and the lignin and extractives decreases, tensile and flexural strengths of the WPC increase. At the same loading level of wood flours, the smaller particle size (80~100 mesh) of wood flours showed highly improved tensile and flexural strengths, compared to the larger one (40~60 mesh). The impact strength of the WPC was not significantly affected by the wood species, but the wood flours of larger particle size showed better impact strengths. The addition of maleated polypropylene (MAPP) provided the highly improved tensile, flexural and impact strengths. Morphological analysis shows improved interfacial bonding with MAPP treatment for the composites.

The Influence of AH-26 and Zinc Oxide-Eugenol Root Canal Sealer on the Shear Bond Strength of Composite Resin to Dentin (AH-26 및 산화아연유지놀 근관실러가 상아질에 대한 복합레진의 전단결합강도에 미치는 영향)

  • Cho, Ju-Yeon;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.147-152
    • /
    • 2006
  • The purpose of this study was to evaluate the influence of the AH-26 root canal sealer on the shear bond strength of composite resin to dentin. One hundred and forty four (144) extracted, sound human molars were used. After embedding in a cylindrical mold, the occlusal part of the anatomical crown was cut away and trimmed in order to create a flat dentin surface. The teeth were randomly divided into three groups; the AH-26 sealer was applied to the AH-26 group, and zinc-oxide eugenol (ZOE) paste was applied to the ZOE group. The dentin surface of the control group did not receive any sealer. A mount jig was placed against the surface of the teeth and the One-step dentin bonding agent was applied after acid etching. Charisma composite resin was packed into the mold and light cured. After polymerization, the alignment tube and mold were removed and the specimens were placed in distilled water at $37^{\circ}C$ for twenty four hours. The shear bond strength was measured by an Instron testing machine. The data for each group were subjected to one-way ANOVA and Tukey's studentized rank test so as to make comparisons between the groups. The AH-26 group and the control group showed significantly higher shear bond strength than the ZOE group (p<0.05). There were no significant differences between the AH-26 group and the control one (p>0.05). Under the conditions of this study, the AH-26 root canal sealer did not seem to affect the shear bond strength of the composite resin to dentin while the ZOE sealer did. Therefore, there may be no decrease in bond strength when the composite resin core is built up immediately after a canal filling with AH-26 as a root canal sealer.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

INFLUENCES OF DRY METHODS OF RETROCAVITY ON THE APICAL SEAL (치근단 역충전와동의 건조방법이 폐쇄성에 미치는 영향)

  • Lee, Jung-Tae;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.166-179
    • /
    • 1999
  • Apical sealing is essential for the success of surgical endodontic treatment. Root-end cavity is apt to be contaminated with moisture or blood, and is not always easy to be dried completely. The purpose of this study was to evaluate the influence of dry methods of retrocavity on the apical seal in endodontic surgery. Apical seal was investigated through the evaluation of apical leakage and adaptation of filling material over the cavity wall. To investigate the influence of various dry methods on the apical leakage, 125 palatal roots of extracted human maxillary molar teeth were used. The clinical crown of each tooth was removed at 10 mm from the root apex using a slow-speed diamond saw and water spray. Root canals of the all the specimens were prepared with step-back technique and filled with gutta-percha by lateral condensation method. After removing of the coronal 2 mm of filling material, the access cavities were closed with Cavit$^{(R)}$. Two coats of nail polish were applied to the external surface of each root. Apical three millimeters of each root was resected perpendicular to the long axis of the root with a diamond saw. Class I retrograde cavities were prepared with ultrasonic instruments. Retrocavities were washed with physiologic saline solution and dried with various methods or contaminated with human blood. Retrocavities were filled either with IRM, Super EBA or composite resin. All the specimens were immersed in 2% methylene blue solution for 7 days in an incubator at $37^{\circ}C$. The teeth were dissolved in 14 ml of 35% nitric acid solution and the dye present within the root canal system was returned to solution. The leakage of dye was quantitatively measured via spectrophotometric method. The obtained data were analysed statistically using one-way ANOVA and Duncan's Multiple Range Test. To evaluate the influence of various dry methods on the adaptation of filling material over the cavity wall, 12 palatal roots of extracted human maxillary molar teeth were used. After all the roots were prepared and filled, and retrograde cavities were made and filled as above, roots were sectioned longitudinally. Filling-dentin interface of cut surfaces were examined by scanning electron microscope. The results were as follows: 1. Cavities dried with paper point or compressed air showed less leakage than those dried with cotton pellet in Super EBA filled cavity (p<0.05). However, there was no difference between paper point- and compressed air-dried cavities. 2. When cavities were dried with compressed air, dentin-bonded composite resin-filled cavities showed less apical leakage than IRM- or Super EBA-filled ones (p<0.05). 3. Regardless of the filling material, cavities contaminated with human blood showed significantly more apical leakage than those dried with compressed air after saline irrigation (p<0.05). 4. Outer half of the cavity showed larger dentin-filling interface gap than inner half did when cavities were filled with IRM or Super EBA. 5. In all the filling material groups, cavities contaminated with blood or dried with cotton pellets only showed larger defects at the base of the cavity than ones dried with paper points or compressed air.

  • PDF