• Title/Summary/Keyword: bonded tendons

Search Result 41, Processing Time 0.027 seconds

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.

Analysis of Influence Factors for PSC Beams with Unbonded External Tendons (외부 비부착 강선에 의해 보강된 PSC보의 영향인자 분석)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.261-271
    • /
    • 2006
  • Many uncertainties affecting to the structural behavior of prestressed concrete (PSC) bridges reinforced with the un bonded external tendons are analyzed on the basis of the analytical method introduced in the companion paper. Many design parameters, which must be considered in design procedure, such as friction slip at the deviators, number of deviators, time-dependent deformations of concrete, relaxation of tendon and influence of loading history in PSC bridges are reviewed, and a lot of valuable results are obtained through this parametric study. In advance, the structural responses according to the external tendon profiles are analyzed to grasp if an optimum tendon profile depends on the applied loading type, and the obtained results show that the most stable structural response is revealed when the locations of deviators are coincident with the loading points.

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.

A Study on Evaluation of Ultimate Internal Pressure Capacity of CANDU-type Nuclear Containment Buildings (CANDU형 원자로 격납건물의 극한내압능력 평가에 관한 연구)

  • Kim, Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.343-351
    • /
    • 2011
  • Nuclear containment building is the last barrier for being secure from any nuclear power plant accident. Therefore, it is very important to understand the ultimate capacity of nuclear containment building to loads associated with severe accidents. LOCA (loss of coolant accident) is considered as the basic accidental load and CANDU-type containment building is considered as a target structure in order to conduct the numerical analysis for the structural safety of a containment building. The CANDU-type containment building is a prestressed concrete shell structure which has the dome and the cylindrical wall and is reinforced with bonded tendons. In this paper, the evaluation of ultimate internal pressure capacity was carried out by nonlinear analysis of a prestressed concrete containment building using 3-dimensional structural analysis system.

Long-term Behavior of Precast Circular Composite Piers with Bonded Tendons (강연선으로 긴장한 강재매입형 조립식 합성교각의 장기거동)

  • Yoon, Jae-Young;Shim, Chang-Su;Chung, Young-Soo;Lim, Hyun-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.205-208
    • /
    • 2008
  • Steel-embedded composite piers can enhance the resistance of core concrete by confinement of the steel elements and also can strengthen the stability of the embedded steel elements by concrete parts, so that the resistance of the composite members and seismic requirements can be provided without increasing section dimensions and self-weight. While modular composite piers with single segment do not need prestressing, precast segment composite piers with multiple segments need to have prestressing to prevent excessive cracking at the joints. Initial stresses and deformation by the introduced prestress are changed by long-term properties of concrete and need to be considered in the design. This paper deals with the prestress losses by the measurement of load cells, strains of reinforcements, concrete and embedded steel tubes.

  • PDF

Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force (강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Yang, In-Hwan;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.513-521
    • /
    • 2009
  • Recently, the externally prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external unbonded tendon is different from that of normal bonded PSC beams in that the slip of tendons at deviators and the change of tendon eccentricity occurs as external loads are applied in external unbonded PSC beams. The purpose of the present paper is therefore to evaluate the flexural behavior by performing static flexural test according to tendon area and tendon force. From experimental results, before flexural cracking, there was no difference between external members and bonded members. However, after cracking, yielding load of reinforcement, ultimate load, and the tendon stress of external members was lower than that of bonded members. For the relationship of load-tendon stress, the increasing of tendon strain was inversely proportional to the initial tendon force. However, even if the initial tendon force was large, the tendon strain with small effective stress was smaller than that with large effective stress. The concrete compressive strain was proportional to the effective stress of external tendon. From the comparison between test results and codes, the ACI-318 could not consider the effect of tendon force or effective stress, and especially the results of ACI-318 were very small, so it was very conservative. And the AASHTO 1994 could be influenced on the tendon area, initial force and effective stress, but as it was made on the basis of internal unbonded tendon, its results were much larger than the test results. For this reason, the new correct predict equation of external tendon stress will be needed.

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

Flexural Behavior Characteristics of Steel I-Beam Strengthened by the Post-tensioning Method on the Field Experiment (현장실험을 통한 외부 후긴장 Steel I-Beam의 휨 거동 특성)

  • Cho, Doo-Yong;Park, Dae-Yul;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Recently, the externally prestressed unbonded steel I-beam bridges have been increasingly built. The mechanical behavior of prestressed steel I-beams which are with external unbonded tendon is different from that of normal bonded PSC beams in a point of that the slip of tendons at deviators and the change of tendon eccentricity occurs, when external loads are applied in external unbonded steel I-beams. The concept of prestressing steel structures has not been widely considered, in spite of long and successful history of prestressing concrete members. In this study, The field experiment on prestressed steel I-beams has been performed in the various aspects of prestressed I-beam including the tend on type and profile.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.