Browse > Article

A Study on Evaluation of Ultimate Internal Pressure Capacity of CANDU-type Nuclear Containment Buildings  

Kim, Sun-Hoon (영동대학교 토목환경공학과)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.24, no.3, 2011 , pp. 343-351 More about this Journal
Abstract
Nuclear containment building is the last barrier for being secure from any nuclear power plant accident. Therefore, it is very important to understand the ultimate capacity of nuclear containment building to loads associated with severe accidents. LOCA (loss of coolant accident) is considered as the basic accidental load and CANDU-type containment building is considered as a target structure in order to conduct the numerical analysis for the structural safety of a containment building. The CANDU-type containment building is a prestressed concrete shell structure which has the dome and the cylindrical wall and is reinforced with bonded tendons. In this paper, the evaluation of ultimate internal pressure capacity was carried out by nonlinear analysis of a prestressed concrete containment building using 3-dimensional structural analysis system.
Keywords
CANDU-type nuclear power plant; containment building; prestressed concrete; 3-D finite element analysis; internal pressure capacity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Amin, M., Eberhardt, A.C., Erler, B.A. (1993) Design Considerations for Concrete Containments under Severe Accident Loads, Nuclear Engineering and Design, 145, pp.331-338.
2 Belarbi, A., Hsu, T.T.C. (1994) Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete, ACI Structural Journal, 91(4), pp.465-474.
3 Dameron, R.A. et al. (1997) Preliminary Analysis of a 1:4 Scale Prestressed Concrete Containment Vessel Model, Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology, H03/3, France.
4 De Witte, F.C., Kikstra, W.P. (2002) DIANA-8.1 User's Manual Analysis Procedures, TNO Building and Construction Research.
5 FIB Task Group (2001) Nuclear Containments, International Federation for Structural Concrete (fib).
6 Figueiras, J.A., Owen, D.R.J (1984) Analysis of Elasto-Plastic and Geometrically Nonlinear Anisotropic Plates and Shells, Finite Element Software for Plates and Shells, Pineridge Press.
7 Hessheimer, M.F., Pace, D.W., Klamerus, E.W., Matsumoto, T., Costello, J.F. (1997) Instrumentation and Testing of a Prestressed Concrete Containment Vessel Model, Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14), Lyon, France, H03-4, pp.97∼103.
8 Maekawa, K., Pimanmas, A., Okamura, H. (2003) Nonlinear Mechanics of Reinforced Concrete, Spon Press.
9 Rizkalla, S.H., Simmonds, S.H., MacGregor, J.G. (1984) Prestressed Concrete Containment Model, Journal of Structural Engineering, ASCE, 110(4), pp.730-743.   DOI   ScienceOn
10 곽효경, 김재홍, 김도연 (2005a) PSC 구조물의 유한요소해석을 위한 긴장재 모델 개발, 대한토목학회 논문집, 25(I-A), pp.153-161.
11 곽효경, 김재홍, 김선훈, 정연석 (2005b) 긴장재의 슬립거동을 고려한 원자로 격납건물의 비선형 해석, 한국전산구조공학회 논문집, 18(4), pp.335-346.
12 김선훈 (2010) 원자로 격납건물의 3차원 구조해석시스템, 한국전산구조공학회 논문집, 23(2), pp.235-243.
13 이홍표, 전영선 (2006) 철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소, 한국전산구조공학회 논문집, 19(1), pp.93-104.
14 이홍표, 전영선, 이상진 (2007) 한국형 원전 격납건물의 비선형해석에 관한 연구, 한국전산구조공학회 논문집, 20(3), pp.353-364.
15 정철헌, 장성욱, 조경태, 박칠림 (1996) 재료-비선형 모델을이용한 CANDU형 원자력발전소 격납구조물의 극한내압능력 평가, 대한토목학회 논문집, 16(I-2), pp.305-316.
16 함대기, 최인길 (2010) 비선형 유한요소 해석을 이용한CANDU형 격납건물의 내압취약도 평가, 한국전산구조공학회 논문집, 23(4), pp.445-452.