• 제목/요약/키워드: bond-slip effect

검색결과 105건 처리시간 0.02초

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • 제23권3호
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.

부착응력-상대슬립을 이용한 휨균열폭 산정 (ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP)

  • 고원준;김진호;서봉원;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과 (Implementation of Bond Slip Effect in Analysis of RC Beams Using Layerd Section Method)

  • 김진국;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-13
    • /
    • 2006
  • 이 논문에서는 적층단면법에 기초하여 단조하중 또는 반복하중을 받는 철근콘크리트 보 및 기둥 부재의 비선형 해석모델이 제안되었다. 완전부착 가정을 토대로 하고 있는 적층단면법은 콘크리트와 철근 사이의 부착슬럽 거동을 고려하지 못한다는 고전적 비선형 해석법과는 달리, 균열 발생시 철근을 따라 발생되는 부착슬립 거동을 힘의 평형관계와 변위의 적합조건으로 정량화하고, 그 결과로부터 철근의 강성을 보정해줌으로써 반영하도록 하였다. 이는 적층단면법에서 추가 자유도(double node)를 도입하지 않고 부착슬립효과를 고려할 수 있다는데 그 의의를 둘 수 있을 것이다. 나아가 제안된 방법에 의한 해석결과와 실험결과와의 비교를 통해, 제안된 방법은 부착슬립 거동에 의한 강성저하(stiffness degradation)를 동반하는 철근콘크리트 보 및 기둥 부재의 균열거동을 효과적으로 고려할 수 있음을 검증하였다

부착슬립효과를 모사하기 위한 해석기법의 개발 (Development of an Analytic Algorithm to Simulate Bond-Slip Effect)

  • 곽효경
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.711-719
    • /
    • 1994
  • 본 논문은 철근콘크리트 구조물의 해석시 부착슬립의 효과를 효율적으로 고려하기 위한 새로운 알고리즘의 개발에 관한 것으로 2중절정을 사용해야 하는 기존의 고전적인 부착요소와는 달리 부착슬립 효과를 고려한 철근의 등가강성을 산정하므로써 2중절점의 고려없이 부착슬립 효과를 고려할 수 있도록 도모하였다. 또한 콘크리트 변위를 산정한 후 철근의 각 절점에서 힘과 변위의 평형관계와 철근과 콘크리트 사이의 관계식을 이용하여 구성된 관계식을 토대로 철근요소의 각 절점변위와 부재력을 첫번째 철근요소부터 역으로 산정하는 반복해석 과정을 통해 최종 결정하게 된다.

  • PDF

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.