• Title/Summary/Keyword: bond test

Search Result 1,577, Processing Time 0.029 seconds

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

The effect of preheat treatment on ceramic to metal bond strength (도재-금속의 결합 강도에 미치는 비금속 합금의 열처리 효과)

  • Kim, Chi-Young;Kim, Young-Gon; Cho, Hyun-Seol
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • In dental prosthetics, the application of metal-ceramic restorations has steadily increased since their introduction. This is due to excellent esthetics in combination with high mechanical stability. In order to optimum bond strength between metal and ceramics, controlled oxidation of metal substructure is essential factor. Beryllium containing and beryllium free Ni-Cr alloys for metal-ceramic restorations were evaluated for the metal-ceramic bond strength by changing heat treatment for oxide formation. A mechanical three-point bending test was employed to evaluate the interfacial bond strength of metal-ceramic. In each metal, plate type specimens were used for mechanical three-point bending test. With Ni-Cr alloys for metal ceramics, mechanical three-point bending test showed that double degassing was more available preheat treatment method than another. It was found that beryllium containing Ni-Cr alloys are more effective than beryllium-free for metal-ceramic bond strength.

  • PDF

Experimental Study on Bond Performance of RC Beams According to Absorption of Recycled Coarse Aggregates (순환 굵은 골재 흡수율에 따른 RC 보의 부착성능에 관한 실험적 연구)

  • Kim, Sang-Woo;Lee, Hyun-Ah;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.100-107
    • /
    • 2010
  • This study evaluates the bond behavior of reinforced concrete (RC) beams using recycled coarse aggregates. A total of four specimens were cast and tested. The test parameter was the type of coarse aggregates, that is, natural and recycled coarse aggregates, and the absorption ratio of recycled coarse aggregate. The recycled coarse aggregates with absorption ratios of 3% and 6% were used in this test. The specimens were simply supported and were subjected to a concentrated load. A test method proposed by Ichinose was adopted to estimate effectively the bond properties of specimens. From the experimental results, it was found that there was no difference of bond characteristics according to the absorption ratio of recycled coarse aggregates.

Bond and Flexural Properties of Fiber Reinforced Concrete with Recycled Poly Ethylene Terephthalate Waste (재생 폐 PET섬유보강 콘크리트의 부착 및 휨 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Choi, Min-Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.401-406
    • /
    • 2008
  • This study can be used to produce structurally efficient recycled PET fiber from used waste PET bottles and evaluated the bond performance of the three type of recycled PET fiber and cement matrix. Also, the flexural tests were performed on concrete reinforced using the three type of recycled PET fibers. The test results showed that the recycled PET fiber was significantly increased bond strength. The flexural test results are demonstrated that recycled PET fibers improved the flexural toughness of concrete. Based on the bond and flexural test results, the bond and flexural performance of embossed type recycled PET fibers were significantly better than those of the other shape fibers.

Failure Mechanism of Headed Reinforcement including Bond Failure (부착파괴를 고려한 Headed Reinforcement의 파괴메카니즘)

  • 박종욱;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • Previous researches about headed reinforcement have not been concerned about bond failure which is quite important is some cases. In this paper, failure mechanism including bond failure was presented in order to define the contribution of bond stress at the time failure occurs. Examined with design codes and test results, it is proved to be rational to consider the contribution of bond stress in determining the ultimate pull-out capacity of headed reinforcement. Direct adaptation of design code for anchor bolt without modification for the contribution of bond stress will lead to underestimate the capacity of headed reinforcement.

  • PDF

Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique

  • Dimitriadis, Konstantinos;Spyropoulos, Konstantinos;Papadopoulos, Triantafillos
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • PURPOSE. The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. MATERIALS AND METHODS. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity (E) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. RESULTS. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was $222{\pm}5.13GPa$ and $227{\pm}3GPa$, respectively. The bond strength was $51.87{\pm}7.50MPa$ for test group and $54.60{\pm}6.20MPa$ for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. CONCLUSION. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

THE EFFECTS OF FLUORIDE RELEASING ORTHODONTIC SEALANT ON THE SHEAR BOND STRENGTH Of LIGHT-AND CHEMICAL-CURED ORTHODONTIC RESINS (불소가 유리되는 교정용 전색제가 광중합형 및 화학중합형 교정용 접착제의 전단결합강도에 미치는 영향)

  • Kim, Bong-Hyun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.781-789
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of fluoride relasing orthodontic sealant on the shear bond strength of light-and chemical-cured orthodontic rosins, to compare the shear bond strenth with light-and chemical-cured orthodontic resins, and to identify the changes of shear bond strength by rebonding in vitro. The brackets were divided into eight groups. Each group of metal brackets had different bonding mechanisms with adhesives. Group A : Transbond only Group B : Mono-Lok 2 only Group C : Light cured FluoroBond+Transbond Group D : Light cured FluoroBond+Mono-Lok 2 Group E : Transbond only(rebonded) Group F : Nomo-Lok 2 only(rebonded) Group G : Light cured FluoroBond+Transbond(rebonded) Group H : Light cured FluoroBond+Mono-Lok 2(rebonded) 65 extracted human premolars were prepared for bonding and 65 metal brackets for each group were bonded to prepared enamel surfaces of buccal surfaces as the above prescription. 24 hours bonding after, the Instron universal testing machine was used to test the shear bond strength of metal brackets to enamel. After debonding, same kind of metal brackets for each group were rebonded to prepared enamel surfaces of buccal surfaces to test the shear bond strength at the rebonding to enamel. Statistical analysis of the data was carried out Student's t-test ANOVA test, and Scheffe test using $SPSS/PC^+$ The results were as follows : 1. The order of shear bond strength was Group B(11.84MPa), Group A(10.75MPa), Group, D(9.69MPa), and Group C(9.39MPa)in lst bonded groups. 2. The order of shear bond strength was Group E(7.40MPa), Group G(6.48MPa), Group F(5.89MPa), and Group H(5.15MPa) in rebonded groups. 3. The shear bond strength of chemical cured orthodontic rosins had higher than that of light-cured orthodontic resins in all groups, but there was no statistical significance between groups(P>0.05). 4. In rebonded groups, the shear bond strength of light cured orthodontic rosins had higher than that of chemical cured orthodontic resins, but there was no statistical significance between groups(P>0.05). 5. The shear bond strength of all rebonded groups progressively decreased than that of 1st bonded groups, and there was statistical significance between groups(p<0.05, p<0.001).

  • PDF

A Study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members (철근의 부식정도와 부착강도에 대한 연구)

  • 유환구;이병덕;김국한;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.621-626
    • /
    • 1998
  • An experimental investigation on the reinforcing bar corrosion and relationshid of reinforcing bar and concrete bond strength has been conducted to establish the allowable limit of rust in the construction field. The reinforcing bars used in this study were rusted before embedding in concrete. The first component of this experiment is to make rust of reinforcing bar rust artificially based on Faraday's theory at certain rates such as 2, 4, 6, 8 and 10% of reinforcing bar weight. For estimation of the amount of rust by weight, Clarke's solution and Shot blasting were adopted and compared. Parameters include 240 and 450kg/㎠ of compressive strengths and diameter of reinforcing bar (16, 19 and 25mm) corresponding development length for pull-ort test. And, pull-out tests were carried. out according to KSF 2441 and ASTMC 234 to investigate the effect of the corrosion rate on reinforcing bar-concrete bond behavior. It is found from the test results that the test techniques for corrosion of bar used in this study is relatively effective and correct test method. Results shows that up to 2% of rust increases the bond strength regardless of concrete strength and diameter of reinforcing bar like the existing data. It might be because of the roughness from rust. As expected, the bond strength increases as compressive strength of concrete increases and the diameter of bar decreases.

  • PDF

THE ETCHING EFFECTS AND MICROTENSILE BOND STRENGTH OF TOTAL ETCHING AND SELF-ETCHING ADHESIVE SYSTEM ON UNGROUND ENAMEL (법랑질에 대한 total etching과 self-etching 접착제의 산부식 효과와 미세인장결합강도)

  • Oh, Sun-Kyong;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • The purpose of this study was to evaluate the etching effects and bond strength of total etching and self-etching adhesive system on unground enamel using scanning electron microscopy and microtensile bond strength test. The buccal coronal unground enamel from human extracted molars were prepared using low-speed diamond saw. Scotchbond Multi-Purpose (group SM). Clearfil SE Bond (group SE), or Adper Prompt L-Pop (group LP) were applied to the prepared teeth. and the blocks of resin composite (Filtek Z250) were built up incrementally. Resin tag formation was evaluated by scanning electron microscopy. after removal of enamel surface by acid dissolution and dehydration. For microtensile bond strength test. resin-bonded teeth were sectioned to give a bonded surface area of $1\textrm{mm}^2$. Microtensile bond strength test was perfomed. The results of this study were as follows. 1. A definite etching pattern was observed in Scotchbond Multi-Purpose group. 2. Self-etching groups were characterized as shallow and irregular etching patterns. 3. The results (mean) of microtensile bond strength were SM: 26.55 MPa, SE: 18.15 MPa, LP: 15.57 MPa. SM had significantly higher microtensile bond strength than 8E and PL (p < 0.05). but there was no significant differance between SE and PL.

Removal of superficial dentin surface to restore decreased bond strength caused by sodium hypochlorite

  • Song, Mi-Yeon;Hwang, Ho-Keel;Jo, Hyoung-Hoon
    • The Journal of the Korean dental association
    • /
    • v.53 no.12
    • /
    • pp.958-966
    • /
    • 2015
  • Objective: Sodium hypochlorite (NaOCl) decreases the bond strength of resin composite. The purpose of this study was to compare the effect of antioxidant and superficial dentin surface removal on the microtensile bond strength of NaOCl-treated dentin. Materials and Methods: Twenty non-carious human third molars were used in this study. The dentin surfaces were treated with 5.25% NaOCl for 10 min, followed either by treatment with 10% ascorbic acid or superficial dentin surface removal. Two-step self-etch adhesive and resin composite were used for restoration. The bonded specimens were subjected to the microtensile bond strength test. Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's test (p < 0.05). Results: The bond strength after removal of the superficial dentin surface following NaOCl irrigation was similar to that in the control group. The group treated with 10% ascorbic acid demonstrated significantly higher bond strength than the other groups. Conclusion: NaOCl irrigation-induced reduction in dentin bond strength could be recovered by either treatment with 10% ascorbic acid or simple removal of the superficial dentin surface.