• Title/Summary/Keyword: bond structure

Search Result 1,121, Processing Time 0.024 seconds

ANODICALLY-BONDED INTERFACE OF GLASS TO ALUMINIUM

  • Takahashi, Makoto;Nishikawa, Satoru;Chen, Zheng;Ikeuchi, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • An Al film deposited on the Kovar alloy substrate was anodically-bonded to the borosilicate glass, and the bond interfaces was closely investigated by transmission electron microscopy. Al oxide was found to form a layer ~l0 nm thick at the bond interface, and fibrous structure of the same oxide was found to grow epitaxially in the glass from the oxide layer. The fibrous structure grew with the bonding time. The mechanism of the formation of this fibrous structure is proposed on the basis of the migration of Al ions under the electric field. Penetration of Al into glass beyond the interfacial Al oxide was not detected. The comparison of the amount of excess oxygen ions generated in the alkali depletion layer with that incorporated in the Al oxide suggests that the growth of the alkali-ion depletion layer is controlled by the consumption of excess oxygen to form the interfacial Al oxide.

  • PDF

Structure-Reactivity Relationship of Substituted Phenylethyl Arenesulfonates with Substituted Pyridines under High Pressure

  • 박헌영;손기주;정덕영;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1010-1013
    • /
    • 1997
  • Nucleophilic substitution reactions of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines were investigated in acetonitrile at 60 ℃ under respective pressures. The magnitudes of the Hammett reaction constants, ρX, ρY and ρZ indicate that a stronger nucleophile leads to a greater degree of bond formation of C-N and a better leaving group is accompanied by a less degree of bond breaking. The magnitude of correlation interaction term, ρij can be used to determine the structure of the transition state (TS) for the SN reaction. As the pressure is increased, the Hammett reaction constants, ρX and |ρY|, are decreased, but correlation interaction coefficient, ρXZ and |ρYZ|, are increased. The results indicate that the reaction of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines probably moves from a dissociative SN2 to early-type concerted SN2 mechanism by increasing pressure. This result shows that the correlation interaction term ρij can be useful tool to determine the structure of TS, and also the sign of the product ρXZ·ρYZ can be predict the movement of the TS.

The Structure and Ab Initio Studies of Thiourea Dioxide

  • 송진수;김은희;강성권;윤석성;서일환;최성산;이삼근;William P. Jensen
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.201-205
    • /
    • 1996
  • The crystal and molecular structure of thiourea dioxide, (NH2)2CSO2, was determined by x-ray single crystal diffraction techniques. Lattice constants are a=10.669(2), b=10.119(2), and c=3.9151(5) Å with the space group Pnma and Z=4. The thiourea portion of the molecule has a planar conformation. When the two oxygen atoms are included, the sulfur atom is at the apex of a trigonal pyramid formed with the two oxygen atoms and the carbon atom as the base. The crystal structure is stabilized by strong intermolecular hydrogen bonds. Ab initio calculations were performed to investigate the bonding features and reactivity of thiourea dioxide. The calculated bond order of S-C is only 0.481. The hydrogen bond energy was computed to be 22.3 kcal/mol for dimer. MEP analysis reveals that the sites on nucleophilic reactions are S and C atoms.

Behavior Characteristics of U-Shape Wide Composite Beam (U자형 와이드 합성보의 거동특성)

  • Choi, Yun-Cheul;Lee, Sang-Sup;Choi, Hyun-Ki;Park, Keum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.125-133
    • /
    • 2017
  • A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8m. Therefore, in this research, the flexural and shear capacity of 'wide composite beam' which can reduce story height and have long span, is evaluated. Based on test result, the rebar in truss did not affect its flexural strength. However, in the case of the specimen without the rebar, the mechanical bond strength decreased due to slip occurrence at 70% of the flexural yield strength. Based on the test of shear-bond behavior, all specimen without shear connector should be reinforced with 2 or more flat bar, because it did not have enough shear bond strength resisted by the mechanical bond mechanism.

Comparisons of Interfacial Reaction Characteristics on Flip Chip Package with Cu Column BOL Enhanced Process (fcCuBE®) and Bond on Capture Pad (BOC) under Electrical Current Stressing

  • Kim, Jae Myeong;Ahn, Billy;Ouyang, Eric;Park, Susan;Lee, Yong Taek;Kim, Gwang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • An innovative packaging solution, Flip Chip with Copper (Cu) Column bond on lead (BOL) Enhanced Process (fcCuBE$^{(R)}$) delivers a cost effective, high performance packaging solution over typical bond on capture pad (BOC) technology. These advantages include improved routing efficiency on the substrate top layer thus allowing conversion functionality; furthermore, package cost is lowered by means of reduced substrate layer count and removal of solder on pad (SOP). On the other hand, as electronic packaging technology develops to meet the miniaturization trend from consumer demand, reliability testing will become an important issue in advanced technology area. In particular, electromigration (EM) of flip chip bumps is an increasing reliability concern in the manufacturing of integrated circuit (IC) components and electronic systems. This paper presents the results on EM characteristics on BOL and BOC structures under electrical current stressing in order to investigate the comparison between two different typed structures. EM data was collected for over 7000 hours under accelerated conditions (temperatures: $125^{\circ}C$, $135^{\circ}C$, and $150^{\circ}C$ and stress current: 300 mA, 400 mA, and 500 mA). All samples have been tested without any failures, however, we attempted to find morphologies induced by EM effects through cross-sectional analysis and investigated the interfacial reaction characteristics between BOL and BOC structures under current stressing. EM damage was observed at the solder joint of BOC structure but the BOL structure did not show any damage from the effects of EM. The EM data indicates that the fcCuBE$^{(R)}$ BOL Cu column bump provides a significantly better EM reliability.

STDUY ON THE SURFACE MORPHOLOGE AND SHEAR BOND STRENGTH OF IN-CERAM CORE TO RESIN CEMENT AFTER VARING MODES OF SURFACE CONDITIONING (In-Ceram 코아의 표면처리 방법에 따른 레진 시멘트와의 결함강도 및 표면상태에 관한 연구)

  • Kim, Yeung-Sug;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.693-704
    • /
    • 1995
  • This study was performed to evaluate effective surface conditioning method of In-Ceram core to improve bonding with resin cement. The surface of each sample was avraded with glass bead for 20 seconds and then subjected to one of the following conditions : no modification, sandblasting with $50{\mu}m$ slumimum oxide powders for 20 seconds, etching with 20% hydrofluoric acid for 5, 10, and 15 minutes(half of the etched samples were coated with silane), and sandblasting with $250{\mu}m$ aluminum oxide powders and silica coating whith Silicoater MD system(Kulzer, Germany). The surface morphology changes were examined with scanning electronic microscope(SEM. and the shear bond strength of In-Ceram core samples to resin cement(Panavis 21, Kurayay, Japan) were measured. It was concluded that : 1. By SEM observation, 20% HF acid etching did not create clear microretentive structure and surface roughness diminished with increace in etching time. Sandblasting was more effective than 20% hydrofluoric acid etching in producing microretentive structure. 2. The bond strengths of all In-Ceram core samples surface conditioned were increased that that of control group. 3. Silica coating showed higher bond strength than etching with 20% hydrofluoric acid. 4. The use of silane coating was more effective in improving bond strength than lengthening etching time.

  • PDF

Identification of the Polyacetylenes extracted from Acanthopanax Senticosus by Petroleum Ether (가시오가피(Acanthopanax senticosus)의 석유에테르 추출물 중 polyacetylene계 물질의 동정)

  • Yang, Hyo-Jin;Kim, Eun-Mi;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2008
  • This study was conducted to isolate polyacetylenes from the Acanthopanax senticosus and to identify the chemical structure of the polyacetylenes by UV, IR, $^1H$-NMR and $^{13}C$-NMR. One of the liposoluble materials was extracted with petroleum ether. Polyacetylene compounds were collected through solvent fractionation at silica gel column chromatograph. The HPLC was used for the semi-preparative separation IR spectra of fraction 5 showed triple bonds at $2256cm^{-1}$ and double bond at $1654cm^{-1}$, respectively, $^1H$-NMR spectra of Fraction 5 showed the double bond at 5.35-5.48 ppm. Triple bond at 64.0. 71.2, 74.2, 80.2 ppm and double bond at 121.89, 133.0 ppm were observed in the $^{13}C$-NMR spectra.

  • PDF

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film (SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4468-4472
    • /
    • 2010
  • SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

Nonlinear Analysis of Cyclically Loaded Concrete-Steel Structures Using an Anchor Bond-Slip Model (앵커 부착-미끄러짐 모형을 이용한 콘크리트-강재 구조물의 비선형 반복하중 해석)

  • Lim, Ju Eun;Lee, Jee Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.495-501
    • /
    • 2009
  • In this paper, a numerical anchor bond-slip model is proposed to improve the numerical simulation of concrete-steel structures connected with steel anchor bolts and subjected to extreme cyclic loading. The suggested bond-slip model is composed of a group of nonlinear uniaxial connector elements and its parameters can be determined by calibrating the model with pull-out test data. Numerical analysis results from simulating a concrete foundation-steel column structure using the proposed bond-slip anchor model, which is implemented based on Abaqus elements, and the perfect-bond anchor model are compared with the experimental results. It is concluded that a reasonable anchor bond-slip model is required to realistically simulate concrete-steel structures subjected to extreme cyclic loading, and the proposed anchor bond-slip model shows acceptable performance in the present numerical analysis.