• Title/Summary/Keyword: bond stress-slip relationships

Search Result 22, Processing Time 0.018 seconds

An Experimental Investigation on the Bond Characteristics of Reinforced Concrete Structure (철근 콘크리트 부재의 부착거동에 관한 실험적 연구)

  • 오병환;이성로;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.122-127
    • /
    • 1990
  • The transfer of forces across the interface by bond between concrete and steel is of fundamental importance to many aspects of reinforced concrete behavior. Bond stress - slip relationships were studied using a symmetrical tension test specimen. This type of test is intented to simulate conditions in the tension zone of a concrete beam between primary cracks and below the neutral axis. These relationships between local bond stress and local slip are quite different at different locations along the bar. The present study allows more accurate analysis of reinforced concrete structures by employing more realistic bond stress-slip relations.

  • PDF

Experimental Observation on Bond-Slip Behavior between Concrete and CFRP Plate

  • Yang, Dong-Suk;Hong, Sung-Nam;Park, Sun-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • This paper discusses the failure mode of reinforced concrete beams strengthened with composite materials based on six experimental set-ups to determine the FRP-to-concrete bond strength. Interfacial bond behavior between concrete and CFRP plates was discussed. Shear test were performed with different concrete compressive strengths (21 MPa and 28 MPa) and different bonding length (100 mm, 150 mm, 200 mm, and 250 mm). Shear test results indicate that the effective bond length (the bond length beyond which the ultimate load does not increase) was estimated as $196{\sim}204\;mm$ through linear regression analysis. Failure mode of specimens occurred due to debonding between concrete and CFRP plates. Maximum bond stress is calculated as about $3.0{\sim}3.3\;MPa$ from the relationships between bond stress and slip. Finally, the interfacial bond-slip model between CFRP plates and concrete, which is governed debonding failure, has been estimated from shear tests. Average bond stress was about $1.86{\sim}2.04\;MPa$, the volume of slip between CFRP plate and concrete was about $1.45{\sim}1.72\;mm$, and the fracture energy was found to be about $1.35{\sim}1.71\;N/mm$.

ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP (부착응력-상대슬립을 이용한 휨균열폭 산정)

  • 고원준;김진호;서봉원;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

Predicting the bond between concrete and reinforcing steel at elevated temperatures

  • Aslani, Farhad;Samali, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • Reinforced concrete structures are vulnerable to high temperature conditions such as those during a fire. At elevated temperatures, the mechanical properties of concrete and reinforcing steel as well as the bond between steel rebar and concrete may significantly deteriorate. The changes in the bonding behavior may influence the flexibility or the moment capacity of the reinforced concrete structures. The bond strength degradation is required for structural design of fire safety and structural repair after fire. However, the investigation of bonding between rebar and concrete at elevated temperatures is quite difficult in practice. In this study, bond constitutive relationships are developed for normal and high-strength concrete (NSC and HSC) subjected to fire, with the intention of providing efficient modeling and to specify the fire-performance criteria for concrete structures exposed to fire. They are developed for the following purposes at high temperatures: normal and high compressive strength with different type of aggregates, bond strength with different types of embedment length and cooling regimes, bond strength versus to compressive strength with different types of embedment length, and bond stress-slip curve. The proposed relationships at elevated temperature are compared with experimental results.

An Experimental Study on the Bond Characteristics of Reinforced Concrete Structures (철근 콘크리트 부재의 부착특성에 관한 실험 연구)

  • 오병환;강영진;이성로;방기성
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.99-107
    • /
    • 1990
  • The transfer of forces across the interface by bond between concrete and steel is of fundamentul importance to many aspects of reinforced concrete behavior. Bond stress-slip relationships were studied using a symmetri¬cal tension test specimen. This type of test is intended to simulate conditions in the tension zone of a concrete beam between primary cracks and below the neutral axis. These relationships between local bond stress and local slip are found to be quite different at different locations along the bar. The bond behavior under cyclic lo¬ading is also studied in the present study, and the increase of bond slip and steel strains is clarified from those tests.

Prediction of Crack Width and Bond Stress-Slip Relationships in Reinforced Concrete Members (철근콘크리트 부재의 부착응력-미끌림 관계와 균열폭 예측)

  • Kim Jang Hyun;Lee Ki Yeo;Kim Dae Joong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.193-196
    • /
    • 2005
  • This study deals with the estimation of the crack width by stabilized cracking considering bond-slip relationships in reinforced concrete members. The proposed method utilizes the sameness of tension stiffening and a change of bond-slip relationships because of concrete's splitting. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental date and the major code spcifications. The analytical results of analysis presented in this study indicate that the proposed method can be effectively estimated the crack width of the reinforced concrete members.

  • PDF

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Evaluation of Crack Width Based on the Actual Bond Stress-Slip Relationship in Structural Concrete Members (부착응력-미끌림 관계에 기반한 철근콘크리트 부재의 균열폭 산정)

  • Kim, Woo;Lee, Ki-Yeol;Kim, Jang-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.91-100
    • /
    • 2006
  • This paper presents an analytical model for evaluation of crack widths in structural concrete members. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 are employed in this study together with the assumption of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test specimens available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

An Experimental Study on the Bond Split Mechanism of High Strength Concrete (고강도 콘크리트의 부착할렬기구에 관한 실험적 연구)

  • 장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.