• Title/Summary/Keyword: bond resistance

검색결과 401건 처리시간 0.021초

중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구 (A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

표면 변화에 따른 주조용 티타늄 합금과 도재와의 결합강도 변화에 관한 연구 (A Study of Porcelain Bond Strength to Cast Ti Alloy with respect to Change of Surface Characteristic)

  • 정인성;최성민
    • 대한치과기공학회지
    • /
    • 제30권1호
    • /
    • pp.65-71
    • /
    • 2008
  • The use of titanium in the field of dentistry has increased, due to their excellent biocompatibility, appropriate mechanical properties, corrosion-resistance and low price. However, many difficulties with the use of titanium for metal-ceramic crowns remain to be solved. The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics of specific titanium porcelain bonded to cast titanium. The surfaces of Titanium were prepared with 4 test groups, i) sandblasted with particles of different size, ii) sandblasted after treated oxidization and oxidized after sandblast. We observed the bond strength and node aspect of titanium and ceramic, and respect to the methods of modifying surface of titanium by the test of mean roughness of surface, Scanning Electron Microscope, and 3-point flexural bend test. The results show that, 1. The specimens, which treated oxidization after process of sandblast with particles of 50um size, were the better for the bond strength in comparison with other specimen. 2. The specimen with process of sandblasting after oxidization treatment were the better for stability of the bond strength. 3. The wettability of titanium surface affect the bond strength.

  • PDF

변전소 철골 내화뿜칠 부착강도 기준설정에 관한 실험적 연구 (The Experimental Study on the Suggestion for Bond Strength Standard of Sprayed Fire Resistive Materials Used at the Substation Steel Structures)

  • 박동수;정원섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.128-137
    • /
    • 2014
  • 내화뿜칠재는 주로 철골구조물 위에 시공하여 내화구조기준을 만족하기 위한 것이다. 국내에서는 원자력발전소를 비롯하여 철골구조물에 내화뿜칠재를 시공하여 왔지만, 재료특성 중 중요한 요건인 부착강도기준이 제정되어있지 않았다. 다만, 원자력발전소는 원전의 기준에 따라 부착강도 기준이 있었다. 본 논문에서는 변전소에 시공되는 내화뿜칠재의 부착강도 기준을 정하고자 하였다. 기준설정 방법은 현재 사용되는 제품으로 실험체를 제작하고, 변전소 환경에 따라 열화시키며 부착강도를 측정하고 구조물 내구연한 기간 동안 열화시킨 후 변전소에서 발생하는 충격하중 실험을 통하여 탈락여부를 평가하여 부착강도기준을 설정하였다. 본 논문에서의 부착강도는 시중에서 사용되는 제품을 기준으로 실험한 것으로 최소한의 값이라고 판단된다.

주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화 (Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete)

  • 김길희
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.639-648
    • /
    • 2006
  • 전단 경간비를 실험 변수로 하여 철근콘크리트 보에 대한 1방향 단조재하의 전단실험을 실시하였다. 실험에 병행하여 실시한 유한요소 해석과 실험결과를 기초로 전단 경간비가 작은 보의 전단내력을 구하는 해석 방법과 주근의 부착작용의 효과를 고려한 crooked main strut과 sub strut으로 구성되는 새로운 매크로 모델을 제안하였다. 그 결과 전단 경간비가 0.75 이하에서 본 연구에서 제안한 매크로 모델이 형성 가능하다는 것과 콘크리트 압축강도의 유효계수를 0.75로 하였을 때 실험 결과와 해석 결과가 가장 잘 일치함을 확인하였다.

현장시험을 통한 DEW 지압형 앵커의 적용성평가 (Application of DEW Anchor with Field Test)

  • 최경집;박우영;유성진;이성락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.745-751
    • /
    • 2009
  • The anchor is used extensively for a cutting slope, an earth retaining wall, an uplift resistance of sub-structures and so on at civil engineering projects and is classified by aim in use, tendon material, and ground/tension fixing type. It can be distinguished extensively into friction type, bearing type, and complex type by ground fixing type. Generally, bond length of friction type anchor has application to 3~10m depending on the friction-resistance characteristics. In this study, 'DEW(double enlargement wedge) bearing type anchor' of new concept is devised. The bond length is about 0.6~0.8m. It can be used on the ground to have the strength characteristics above it of weathered rock. There are merits which are 'period reduction' and 'cost saving' through the minimum of the boring length. In addition, it is so called environmentally friendly Methods because it can reduce the quantity of carbon dioxide through the reducing drilling machine operation time.

  • PDF

Basalt 섬유쉬트의 철도시설 콘크리트구조물 보강재로서의 부착거동 연구 (Bonding Characteristics of Basalt Fiber Sheet as Strengthening Material for Railway Concrete Structures)

  • 박철우;심종성
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.641-648
    • /
    • 2009
  • 최근 철도차량의 속도가 증가함에 따라 철도시설물에도 철근콘크리트 구조물이 많이 적용되고 있는 실정이다. 하지만 이러한 콘크리트 구조물은 공용년수의 증가에 따라 필연적으로 구조적인 보강이 요구된다. 강판보강법 및 섬유복합체(FRP)를 활용한 보강법 등이 가장 일반적으로 적용되는 실정이지만 각 공법마다 나름대로의 단점 역시 존재 한다. 최근 화재나 기타 환경적인 공격에 대하여 강한 내구성을 가진 재료의 개발이 요구되고 있으며 이에 따른 현무암으로부터 추출한 Basalt 섬유를 활용한 섬유보강재가 많은 관심을 받고 있다. 이에 본 연구에서는 Basalt 섬유쉬트를 보강재로 사용할 경우 중요한 특성인 콘크리트와의 부착특성에 관하여 연구를 수행하였다. 실험변수는 보강폭, 길이, 보강겹수를 포함한다. 실험결과, 파괴형태는 계면파괴, 섬유파단, 그리고 rip-off의 형태가 관측되었으며 보강길이보다는 보강폭이 보강강도에 더 많은 영향을 미치는 것으로 판단되었다. 또한 보강길이가 전부 유효하게 작용하지는 않았으며 이에 유효보강길이를 산정하고 이에 따른 부착강도를 산정하였다. 이를 다른 종류의 FRP재료를 활용한 경우에 유효 보강길이와 비교하여 Basalt 섬유쉬트의 부착특성을 분석하였다.

수조구조물의 방수.방식 공사용 유기.무기 소재 및 섬유보강형 바탕처리재의 성능평가에 관한 연구 (A Study on Waterproofing and Anticorosive Performance Evaluation of Surface treatment material used wi th Glass Fiber, Inorganic and Organic Material for Water Tank)

  • 오상근;박봉규;주웅일;박성진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.70-75
    • /
    • 2001
  • There is a problem to be solved for improvement of durability and safety for concrete When the waterproofing and anticorrosive work of main concrete are design, the material a of construction need to be correctly applied to appropriate circumstance conditions. Epoxy mostly been used for concrete water tank structure. Lately, lots of subjects on adaption res in mortar for waterproofing and anticorrosive are under discussion. Then, we attempt to approach by evaluating and comparing every capabilities with waterproofing materials in this experiment. Capability evaluation items include the bond age and curing conditions, the bond strength after accelerated weathering test and fret impact resistance, a mount of water, seepage quan Through the experiment analysis, we found that waterproofingtity, drinking water chemicals resistance. and anticorrosive resin mortar used with glass fiber cloth, inorgar material is dominantly superior to other waterproofing materials. According to this paper, we suggest the resin mortar as a new surface treatment material water tank structure.

  • PDF

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Shear transfer mechanisms in composite columns: an experimental study

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제7권5호
    • /
    • pp.377-390
    • /
    • 2007
  • In the design of concrete filled composite columns, it is assumed that the load transfer between the steel tube and concrete core has to be achieved by the natural bond. However, it is important to investigate the mechanisms of shear transfer due to the possibility of steel-concrete interface separation. This paper deals with the contribution of headed stud bolt shear connectors and angles to improve the shear resistance of the steel-concrete interface using push-out tests. In order to determine the influence of the shear connectors, altogether three specimens of concrete filled composite column were tested: one without mechanical shear connectors, one with four stud bolt shear connectors and one with four angles. The experimental results showed the mechanisms of shear transfer and also the contribution of the angles and stud bolts to the shear resistance and the force transfer capacity.