• Title/Summary/Keyword: bond resistance

Search Result 401, Processing Time 0.023 seconds

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

Evaluation of Durability and Bond Strength of Polymer Powder-Modified Mortars With Accelerators (급결제를 이용한 분말수지 혼입 폴리머 시멘트 모르타르의 부착강도 및 내구성 평가)

  • Lee Chol Woong;Mun Kyoung Ju;Song Hun;Kim Byeang Cheol;Choi Nak Woon;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.559-562
    • /
    • 2005
  • The purpose of this study is to evaluate the durability and bond strength of polymer powder-modified mortars with special accelerator components. The mortars were prepared with various polymer-binder ratios and applied to the concrete substrate as a repair material. Bond strength, flexural and compressive strengths, freeze-thaw resistance and carbonation resistance were measured for the test. As a result, bond strength of the mortars was increased with an increase in the polymer-cement ratio, and freeze-thaw resistance and carbonation resistance were significantly improved with increasing polymer-cement ratio also.

  • PDF

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

Evaluate Bond strength of high Relative Rib Area Bars Using Beam-end test specimens (보 단부 부착시험체에 의한 높은마디 철근의 부착성능)

  • Seo Dong Min;Yang Seung Youl;Hong Gi Suop;Choi Oan Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.112-115
    • /
    • 2004
  • Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force has a limitation. Thus, the only variable is the bearing angle corresponding to the change of bond force. Higher rib height bars possessing higher shearing resistance can maintain higher bearing angle and higher splitting resistance when bars are highly confined, and consequently higher bond strength, than lower rib higher bars. In this study, from the evaluate bond strength of high Relative Rib Area Bars Using beam-end test specimens are compared with the current provisions for development of reinforcement, and the improved design method of bond strength is proposed.

  • PDF

A Study on the Diamond Wheel Wear in Ceramic Grinding (세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구)

  • 공재향;유봉환;소의열;이근상;유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Bond Strength and Corrosion Resistance of Coated Reinforcing Bar Using Hybrid-Type Polymer Cement Slurry (Hybrid형 폴리머 시멘트 슬러리로 도장한 철근의 부착강도와 부식저항성)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.93-99
    • /
    • 2008
  • The purpose of this study is to evaluate the bond strength and corrosion resistance of coated reinforcing bar using hybrid-type polymer cement slurry(PCS). PCS coated steels, which is made from two types of polymer dispersions such as St/BA and EVA are prepared, and tested for bond strength and various corrosion resistances such as autoclaved cure, carbonation and H2SO4 solution. From the test results, the bond strength of PCS coated reinforcing bar using ordinary portland cement at 1-5, 2-1 and 4-5 of mixes is higher than that of uncoated regular steel. However, bond strength of almost PCS coated reinforcing bars using ultra rapid high strength cement is higher than that of epoxy coated bar, is also in ranges of 102% to 123% compared to that of uncoated regular steel. In autoclaved accelerating test, the ratio of corrosion of uncoated regular steel is increased with the increase in NaCl content, but the corrosion of PCS coated steel was very small. In the acceleration test for carbonation, increasing the amount of NaCl the corrosion of coated steel did not produce. The corrosion of uncoated regular steel is increased with the increase in the amount of NaCl. It can be seen that the NaCl following the acceleration test for carbonation can lower the corrosion resistance of concrete. As a result, the corrosion of steel largely is affected by the acceleration curing, chloride ion penetration and carbonation and shown more severe corrosion by applying complex factors. These corrosions of steel can be suppressed by the coating of PCS.

Experimental Study on Evaluation of Bond Strength after Ozone Treatment and Ozone Resistance of Concrete Metal Spray Coating for Advanced Water Treatment (고도정수처리용 콘크리트 금속용사 피막의 내오존성 및 오존처리 후 부착강도 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • The introduction of advanced water treatment facilities has increased as the conventional purification method cannot remove the substance clearly. However, the internal waterproofing and Anticorrosion materials of the advanced water treatment facility using ozone deteriorate due to the oxidation power of ozone and affects the concrete, which causes a decrease in durability. This study is to evaluate the ozone resistance according to the type of spray metal and the surface treatment method of the coating, and the bond strength after ozone treatment in order to develope a finishing method to prevent deterioration of concrete structure of water treatment facility using metal spraying method as a way to construct metal panel with excellent ozone resistance and chemical resistance by an easier way than the previous. The Experimental results show that spray metal Ti has superior ozone resistance even after spraying. It is considered to be the most suitable method for ozone resistance and bond performance by finishing using Teflon sealing as surface treatment method.

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.