• 제목/요약/키워드: bond crack

검색결과 232건 처리시간 0.026초

Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions

  • Kou, Miaomiao;Bi, Jing;Yuan, Binhang;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.339-356
    • /
    • 2020
  • In this article, a developed bond-based peridynamic model for functionally graded materials (FGMs) is proposed to simulate the dynamic fracture behaviors in FGMs. In the developed bond-based peridynamic model for FGMs, bonds are categorized into three different types, including transverse directionally peridynamic bond, gradient directionally peridynamic bond and arbitrary directionally peridynamic bond, according to the geometrical relationship between directions of peridynamic bonds and gradient bonds in FGMs. The peridynamic micromodulus in the gradient directionally and arbitrary directionally peridynamic bonds can be determined using the weighted projection method. Firstly, the standard bond-based peridynamic simulations of crack propagation and branching in the homogeneous PMMA plate are performed for validations, and the results are in good agreement with the previous experimental observations and the previous phase-field numerical results. Then, the numerical study of crack initiation, propagation and branching in FGMs are conducted using the developed bond-based peridynamic model, and the influence of gradient direction on the dynamic fracture behaviors, such as crack patterns and crack tip propagation speed, in FGMs is systematically studied. Finally, numerical results reveal that crack branching in FGMs under dynamic loading conditions is easier to occur as the gradient angle decreases, which is measured by the gradient direction and direction of the initial crack.

부착응력-상대슬립을 이용한 휨균열폭 산정 (ESTIMATION OF CRACK WIDTH USING BOND STRESS-RELATIVE SLIP)

  • 고원준;김진호;서봉원;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.917-922
    • /
    • 2002
  • This paper deals with the estimation of the maximum crack widths considering bond-slip relationships based on experimental data that were tensed by axial force. It is certificated that the concrete stress condition clearly affects the bond-slip relationship. The proposed method utilizes the conventional crack and bond-slip theories as well as the characteristics of deformed reinforcement and size effects. An analytical equation for the estimation of the maximum flexural crack width is formulated as a function of minimum crack length and the coefficient of bond stress effect. The validity, accuracy and efficiency of the proposed method are established by comparing the analytical results with the experimental data and the major specifications (e.g., ACI, CEB-FIP Model code, Turocode 2, JSCE, etc.). The analytical results presented in this paper indicate that the proposed method can be effectively estimated the maximum flexural crack width of reinforced concrete.

  • PDF

Regulator IC 고장분석 사례 (Failure Analysis of Regulator IC)

  • 이재혁;하종신;차승규;박상득
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.123-129
    • /
    • 2002
  • 본 논문에서는 Regulator IC의 불량원인 규명을 통해 반도체 고장분석 방법 및 개선사례를 소개하고자 한다. 고장분석에 사용된 반도체 Package는 8Pin MSOP(Mini Small Outline Package)로, 시장 불량품을 분석한 결과 Regulator IC의 Stitch Bond에 Heel Crack이 발생하여 불안정한 출력을 발생시킴을 알 수 있었다. Stitch Bond Heel Crack의 원인은 Lead Frame부의 박리(Delamination)에 의해 열이나 진동 등의 외부 Stress가 직접 Stitch Bond에 가해져 Crack이 발생된 것으로, Reflow 재현시험을 통해 확인 할 수 있었다. 박리 발생에 의한 Stitch Bond Heel Crack 방지 대책으로 첫째, Bonding Type을 Stitch Bond 에서 Ball Bond로 변경하여 강도를 개선하고 둘째, PCB Layout 변경을 통해 외력이 직접 Regulator IC에 가해지지 않도록 하였다. 개선 결과 현재까지 시장에서 동일 불량은 발생하지 않았다.

  • PDF

Crack development depending on bond design for masonry walls under shear

  • Ural, A.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.257-266
    • /
    • 2012
  • Walls are the most important vertical load-carrying elements of masonry structures. Their bond designs are different from one country to another. This paper presents the shear effects of some structural bond designs commonly used for masonry walls. Six different bond designs are considered and modeled using finite element procedures under lateral loading to examine the shear behavior of masonry walls. To obtain accurate results, finite element models are assumed in the inelastic region. Crack development patterns for each wall are illustrated on deformed meshes, and the numerical results are compared.

치과용 도재의 균열전파 특성과 도재 -금속간의 응력분석 (AN EVALUATION OF THE CRACK PROPAGATION CHARACTERISTICS OF PORCELAIN AND THE BOND STRESS OF CERAMO-METAL SYSTEM)

  • 박주미;배태성;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제32권1호
    • /
    • pp.47-76
    • /
    • 1994
  • This study was carried out to evaluate the effect of the crack propagation characteristics and bond stress of ceramo-metal system. In order to characterize the crack propagation, the static crack propagation stored in $37^{\circ}C$ distilled water of two commerical porcelains and the dynamic crack propagation under cyclic flexure load of ceramo-metal system were examined. In order to characterize the bond stress, the shear bond test, the 3-point flexure bond test, and the finite element stress analysis of ceramo-metal system were conducted. The results obtained were as follows : 1. Bulk densities and Young's moduli of opaque porcelains increased with repeated firing. 2. Maximum fracture toughness during 4 firing cycles showed at the group of 4 firing cycles in Ceramco porcelain and 2 firing cycles in Vita porcelain. 3. Shear bond strength and flexure bond strength of Ceramco-Verabond specimen were larger than those of Ceramco-Degudent G specimen (p<0.05). 4. Interfacial stresses under three point flexure bond test were concentrated at the edges of ceramometal system. 5. When a cyclic flexure load was applied, the crack growth rate of porcelain surface of ceramometal specimens was decreased as load cycles increased.

  • PDF

철근콘크리트 인장부재의 균열 산정식 평가 (Evaluation of Crack Estimation Equation for the Reinforced Concrete Tension Member)

  • 박찬욱;노삼영;신은미
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.197-208
    • /
    • 2009
  • 본 연구의 목적은 국내 콘크리트구조설계기준 부록에 새롭게 포함된 CEB-FIP Model Code 1990 균열 폭 산정식을 콘크리트 강도를 변수로 하여 평가하는 것에 있다, 평가 도구로 부착응력-미끌림 관계를 적용하여 구축한 균열요소모델과 기존 연구자들의 실험결과로부터 얻은 균열폭을 사용하였으며 기존 실험결과와 비교 평가함으로 검증하였다. 평가대상인 MC-90의 균열폭 산정식의 증요변수는 인장증강효과와 평균부착응력이며 이들을 균열요소모델 해석결과와 비교함으로 강도에 따라 개선된 인장증강효과와 평균부착응력을 제안하였다.

부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구 (An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs)

  • 박홍용;연준희;최익창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가 (Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement)

  • 이재준;김승훈;백종은;임재규;김용주
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구 (Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members)

  • 정기오;이기열;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Time-dependent bond transfer length under pure tension in one way slabs

  • Vakhshouri, Behnam
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.301-312
    • /
    • 2016
  • In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.