• Title/Summary/Keyword: bond characteristics

Search Result 707, Processing Time 0.037 seconds

Studies on the etching characteristics of PZT thin films using inductively coupled plasma (고밀도 플라즈마에 의한 PZT 박막의 식각특성 연구)

  • 안태현;김창일;장의구;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.188-192
    • /
    • 2000
  • In this study PZT etching was performed using planar inductively coupled Ar/Cl$_2$/BCI$_3$ plasma. The etch rate of PZT film was 2450 $\AA$/min at Ar(20)/BCl$_3$(80) gas mixing ratio and substrate temperature of 8$0^{\circ}C$. X-ray photoelectron spectroscopy(XPS) analysis for films composition of etched PZT surface was utilized. The chemical bond of PbO is broken by ion bombardment and Cl radical, and the peak of metal Pb in a Pb 4f narrow scan begins to appear upon etching. As increasing additive BCl$_3$content the relative content of oxygen decreases rapidly in contrast with etch rate of PZT thin film. So we though that the etch rate of PZT thin film increased because abundant B and BCl radicals made volatile oxy-compound such as B$_{x}$/O$_{y}$ and/or BClO$_{x}$ bond. We achieved etch profile of about 80$^{\circ}$ at Ar(20)/BCl$_3$(80) gas mixing condition and substrate temperature of 8$0^{\circ}C$TEX>X>.

  • PDF

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Study on Fluorine Penetration of Capping Layers using FTIR analysis (FTIR을 이용한 캐핑레이어의 플루오르 침투 특성 연구)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.300-303
    • /
    • 2004
  • To fill the gap of films for metal-to-metal space High density plasma fluorinated silicate glass (HDP FSG) is used due to various advantages. However, FSG films can have critical drawbacks such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. These problems are generally caused by fluorine penetration out of FSG film. Hence, FSG capping layers such like SRO(Silicon Rich Oxide) are required to prevent flourine penetration. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated through FTIR analysis. FTIR graphs of both SRO using ARC chamber and SiN show that clear Si-H bonds at $2175{\sim}2300cm^{-1}$. Thus, Si-H bond at $2175{\sim}2300cm^{-1}$ of FSG capping layers lays a key role to block fluorine penetration as well as dangling bond.

  • PDF

Effect of Ozonation Consistency on the Ink Removal Efficiency and Pulp Characteristics (오존 처리농도가 ONP의 탈묵 효율 및 펄프 특성에 미치는 영향)

  • 조병묵;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.18-23
    • /
    • 2001
  • The effect of pulp consistency on the deinking properties in the ozone deinking of ONP was investigated in order to develop the environmentally friendly deinking method. The pulp consistency and ozone treatment time were varied for this purpose. Higher pulp consistency during ozone treatment gave better ink removal efficiency than the conventional deinking method. In was also found that the increase of pulp consistency can decrease the ozone treatment time which can meet the deinking quality. WRV of ozone deinked pulp obtained at 10% and 30% of pulp consistencies was lower than those of the conventional deinking method. However, the higher pulp consistency during ozone treatment improved WRV. Highest brightness was obtained at the ozone treatment condition of 30% pulp consistency and 10 minutes. The lower brightness at the other ozone treatment condition should be originated from the excessive decrease of ink particle size and then decrease of true ink removal efficiency. Scott bond was increased with the increase of pulp consistency and treatment time. However, the improvement of breaking length with ozone treatment was no significant.

  • PDF

Flexural performance of RC beams incorporating Zinc-rich and epoxy bonding coating layers exposed to fire

  • Tobbala, Dina E.;Rashed, Ahmed S.;Tayeh, Bassam A.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.163-172
    • /
    • 2022
  • Zinc-rich epoxy (ZRE) is used to overcome corrosion problems in reinforced concrete (RC) beams and coat steel rebars to protect them from humidity and chlorides. An extra coating layer of Sikadur-31 epoxy (SDE) is utilised to increase bond strength because the use of ZRE reduces the bond strength between concrete and steel rebars. However, the low melting point of SDE indicates that concrete specimens are vulnerable to fire. An experimental investigation on flexural performance of RC beams incorporating ZRE-SDE coating of steel rebars that were destroyed by fire is performed in this study. Twenty beams of five concrete mixes with different cementitious contents were tested to compare fire exposure for coated and uncoated rebars of the same beams at room temperature and determine the optimal cementitious content. Scanning electron microscopy (SEM) was also applied to investigate characteristics of fired mixture samples. Results showed that the use of SDE-ZRE at room temperature improves flexural strengths of the five mixes compared with uncoated rebars with percentages ranging from 8.5% to 12.3%. All beams with SDE-ZRE lost approximately 50% of their flexural strength due to firing. Moreover, the mix incorporating SF (silica fume) of 15% and cement content of 400 kg/m3 introduces optimum behaviour compared with other mixes. All results were supported and verified by the SEM analysis and compressive strength of cubic specimens of the same mixes.

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

The Efficiency of Bank Underwriting of Corporate Securities in Korea (국내 자본시장 증권인수기능의 효율성에 관한 연구 : 은행계열과 비은행계열 금융기관 비교 분석)

  • Baek, Jae-Seung;Lim, Chan-Woo
    • The Korean Journal of Financial Management
    • /
    • v.27 no.1
    • /
    • pp.181-208
    • /
    • 2010
  • In July 2007, Korean government has passed "The Capital Market and Financial Investment Services Act" to further develop the capital markets and the Act was to become effective in February 2009. Using a large sample of Korean firms, we have examined (i) the effect of underwriting activities on the firm value (bond spread) comparing commercial bank and investment bank, and (ii) the determinants of the firm value changes following underwriting activities of bank. To test our goal, we collected a wide range of samples of data for bond issuing activities executed by Korean firms listed on the Korea Stock Exchange (KSE) between 2000 and 2003. Our paper is distinguished from previous studies on this subject in a way that we analyzed the effect of corporate bond underwriting activities with regard to commercial banking and investment banking. Initially, we set up a hypothesis that "Certification View" and "Conflict-of-interest View" are major driving forces behind cross-firm differences in performance following bond issuance. We find that, in general, underwriting by investment bank (securities company) brings a positive effect on the firm value (spread between bench mark rate and bond issuing rate). This result indicates that firm value has been negatively affected by the bank underwriting and provides the evidence for "Conflict-of-interest View" in Korea. Our studies have also revealed that any change in firm value following bond issuance is positively related with the firm size (total asset), operating performance, liquidity (cashflow), and equity ownership by foreign investors. Overall, our results support the view that bank underwriting activities can play an important role in determining firm value and financial strategies under "The Capital Market and Financial Investment Services Act" of 2007.

  • PDF

Low Temperature Deposition a-SiNx:H Using ICP Source (ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가)

  • Kang, Sung-Chil;Lee, Dong-Hyeok;So, Hyun-Wook;Jang, Jin-Nyoung;Hong, Mun-Pyo;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.532-536
    • /
    • 2011
  • The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.