• Title/Summary/Keyword: bombardment

Search Result 406, Processing Time 0.026 seconds

Flavonol Glycosides with Antioxidant Activity from the Aerial Parts of Epimedium koreanum Nakai

  • Kim, Eun-Sil;Kim, Mi-Kyung;Kang, Hyun-Kyu;Park, Young-In;Dong, Mi-Sook;Kim, Dong-Hyun;Chung, Ha-Sook
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.233-238
    • /
    • 2008
  • The aerial parts of Epimedium koreanum Nakai have been used to stimulate hormone secretion in treating impotence. Ten flavonol glycosides, 3,4,5-trihydroxy-8-prenylflavone 7-O-[${\beta}$-D-glucopyranosyl($1{\rightarrow}2$)-${\beta}$-D-glucopyranoside] (1), hyperoside (2), icarisid II (3), 2"-O-Rhamnosylicarisid II (4), epimedin A (5), epimedin B (6), epimedin C (7), icariin (8), hexandraside E (9), and epimedoside A (10) were isolated from the an ethylacetate soluble extracts of the aerial parts of Epimedium koreanum Nakai through activity-monitord fractionation and isolation method. The structures of compounds 1 - 10 were elucidated by high resolution fast atom bombardment mass spectrometry and two dimentional nuclear magnetic resonance spectroscopy analysis. Compounds 1 and 4 showed potent antioxidant activity, with $IC_{50}$ values of 19.7 and 11.5 ${\mu}g$/mL and 88.2 and 90.5 ${\mu}M$, respectively.

A Study of the Crystallographic Characteristic of ZnO Thin Film Grown on ZnO Buffer Layer (ZnO Buffer Layer에 의한 ZnO 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;이정석;신성권;김경환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.214-217
    • /
    • 2003
  • In this study, we prepared ZnO thin film on $SiO_2$/Si substrate by FTS (Facing Targets Sputtering) apparatus which can reduce damage on the thin film because the bombardment of high-energy Particles such as ${\gamma}$-electron can be restrained. And, properties of thin filnl grown with ZnO buffer-layer which can be suppress initial growth layer was investigated. The crystalline and the c-axis preferred orientation of ZnO thin film was also investigated by XRD. As a result, we noticed that the ZnO thin film has a good crystallographic characteristic at thickness of ZnO buffer layer 10, 20 nm and working pressure 1 mTorr.

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

원자층 식각방법을 이용한, Contact Hole 내의 Damage Layer 제거 방법에 대한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Lee, Seong-Ho;Kim, Chan-Gyu;Gang, Seung-Hyeon;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.2-244.2
    • /
    • 2013
  • Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.

  • PDF

The Effects of Plasma Treatments on the Surface Energy of the Polycarbonates and on the Adhesion Strength of the Cu Film/Polycarbonate Interface (플라즈마 표면처리에 의한 폴리카보네이트의 표면에너지 및 구리박막과의 접착력 변화에 관한 연구)

  • Cho Byeong-Hoon;Lee Won-Jong;Park Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.745-750
    • /
    • 2005
  • Polycarbonates are widely used as housing materials of electronic handsets. Since the polycarbonate is electrically insulating, there should be a conducting layer on the polycarbonate for EMI shielding. In this study, we sputter deposited Cu films on the polycarbonate substrates for EMI shielding. Plasma treatments of polycarbonates were used to increase the adhesion strength of the Cu film/polycarbonate interface. The surface energy of the polycarbonate was greatly increased from $30mJ/m^2 \;to\; 65mJ/m^2$ by a 200 W $O_2$ plasma treatment for 10s. It is thought that this is because of the ion bombardment. The adhesion strength of the sputter deposited Cu film to the polycarbonate was quantitatively measured by a 4 point bending tester. A moderate plasma surface treatment of the polycarbonate increased the Cu film/polycarbonate adhesion strength by $30\%$. The EMI shielding efficiency of the sputter deposited $10{\mu}m$ Cu lam on the polycarbonate showed 90dB in the range of 100MHz to 1000MHz.

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Review on breeding, tissue culture and genetic transformation systems in Cymbidium (심비디움 육종, 조직배양 및 형질전환 연구동향에 관한 고찰)

  • Lee, Yu-Mi;Kim, Mi-Seon;Lee, Sang-Il;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.357-369
    • /
    • 2010
  • Cymbidium is horticulturally important and has been one of the most commercially successful orchid plants as well as cut flowers around the world including Korea. Up to now, a huge number of elite Cymbidium cultivars have been released on the commercial market via cross-hybridization, mutation and polyploidization breeding techniques. To investigate on breeding system in Cymbidium, we inquired the brief history and techniques of breeding and the current status on Cymbidium breeding in Korea. Also, the general propagation process of elite Cymbidium lines via tissue culture should be presented. However, the slow process of conventional breeding and the lack of useful genes in Cymbidium species delays the introduction of new cultivars to the commercial market. To solve these limitations, efficient regeneration and genetic transformation systems should be established in the improvement of Cymbidium breeding program. During the last several decades, some progress has been made in tissue culture and genetic transformation in Cymbidium species. We review the recent status of tissue culture and genetic transformation systems in Cymbidium plants.

Current status of tissue culture and genetic transformation systems in oilseed rape plants (Brassica napus L.) (유채 조직배양 및 형질전환 연구동향)

  • Lee, Sang-Il;Kim, Yun-Hye;Lee, Dong-Hee;Lee, Yu-Mi;Park, Seo-Jun;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.379-387
    • /
    • 2010
  • Oilseed rape (Brassica napus L.) is an important crop due to its high oil content in the seed. Recently, the demand for the improvement of crop for biodisel energy source is increased as oil prices in the world has increased dramatically. Until now, oilseed rape breeding was carried out by cross-hybridization between different varieties and related germplasms. However, like as many other crops, the application of tissue culture and gene transformation systems has been introduced into oilseed rape breeding program including the development of transgenic canola plants. In this study, we reviewed a history of tissue culture and genetic transformation research in oilseed rape plants and indicated some important aspects for the production of transgenic oilseed rape plants.

Effects of surface modification of $Nafion^{(R)}$ Membrane on the Fuel Cell Performance

  • Prasanna, M.;Cho, E.A.;Ha, H.Y.;Hong, S.A.;Oh, I.H.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.133-138
    • /
    • 2004
  • Proton exchange membrane fuel cell (PEMFC) is considered as a clean and efficient energy conversion det ice for mobile and stationary applications. Anions all the components of the PEMFC, the interface between the electrolyte ,and electrode catalyst plays an important role in determining tile cell performance since the electrochemical reactions take place at the interface in contact with tile reactant gases. Therefore, to increase the interface area and obtain a high-performance PEMFC, surface of the electrolyte membrane was roughened by Ar$^{+}$ beam bombardment. The results imply that by modifying surface of the electrolyte membrane, platinum loading can be reduced significantly without performance loss. To optimize the surface treatment condition, effects of ion dose density on characteristics of the membrane/electrode interface were examined by measuring the cell performance, impedance spectroscopy, and cyclic voltammograms. Surface of the modified membranes were characterized using scanning electron microscopy and FT-IR.R.

  • PDF

Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc.

  • Valbuena-Nino, E.D.;Gil, L.;Hernandez, L.;Sanabria, F.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The hybrid method of three-dimensional ion implantation and electric arc is presented as a novel plasma-ion technique that allows by means of high voltage pulsed and electric arc discharges, the bombardment of non-metallic and metallic ions then implanting upon the surface of a solid surface, especially out of metallic nature. In this study AISI/SAE 4140 samples, a tool type steel broadly used in the industry due to its acceptable physicochemical properties, were metallographically prepared then surface modified by implanting titanium and simultaneously titanium and nitrogen particles during 5 min and 10 min. The effect of the ion implantation technique over the substrate surface was analysed by characterization and electrochemical techniques. From the results, the formation of Ti micro-droplets upon the surface after the implantation treatment were observed by micrographs obtained by scanning electron microscopy. The presence of doping particles on the implanted substrates were detected by elemental analysis. The linear polarization resistance, potentiodynamic polarization and total porosity analysis demonstrated that the samples whose implantation treatment with Ti ions for 10 min, offer a better protection against the corrosion compared with non-implanted substrates and implanted at the different conditions in this study.