DOI QR코드

DOI QR Code

Current status of tissue culture and genetic transformation systems in oilseed rape plants (Brassica napus L.)

유채 조직배양 및 형질전환 연구동향

  • Lee, Sang-Il (Faculty of Life Resources and Environmental Science, Konkuk University) ;
  • Kim, Yun-Hye (Faculty of Life Resources and Environmental Science, Konkuk University) ;
  • Lee, Dong-Hee (Genomine Advanced Biotechnology Research Institute, Genomine Inc.) ;
  • Lee, Yu-Mi (Faculty of Life Resources and Environmental Science, Konkuk University) ;
  • Park, Seo-Jun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jong-Bo (Faculty of Life Resources and Environmental Science, Konkuk University)
  • 이상일 (건국대학교 자연과학대학 생명자원환경과학부) ;
  • 김윤혜 (건국대학교 자연과학대학 생명자원환경과학부) ;
  • 이동희 (제노마인(주) 첨단생명공학연구소) ;
  • 이유미 (건국대학교 자연과학대학 생명자원환경과학부) ;
  • 박서준 (국립원예특작과학원 과수과) ;
  • 김종보 (건국대학교 자연과학대학 생명자원환경과학부)
  • Received : 2010.10.04
  • Accepted : 2010.11.10
  • Published : 2010.12.31

Abstract

Oilseed rape (Brassica napus L.) is an important crop due to its high oil content in the seed. Recently, the demand for the improvement of crop for biodisel energy source is increased as oil prices in the world has increased dramatically. Until now, oilseed rape breeding was carried out by cross-hybridization between different varieties and related germplasms. However, like as many other crops, the application of tissue culture and gene transformation systems has been introduced into oilseed rape breeding program including the development of transgenic canola plants. In this study, we reviewed a history of tissue culture and genetic transformation research in oilseed rape plants and indicated some important aspects for the production of transgenic oilseed rape plants.

Keywords

References

  1. 배정환 (2006) 바이오연료의 보급전망과 사회적 비용.편익 분석. 에너지경제연구원 수시연구보고서 06-04
  2. 원두환 (2008) 바이오에너지산업 육성을 통한 FTA 대응 전략 연구-바이오연료의 비시장가치 평가-. 에너지경제연구원 기술연구보고서 08-16
  3. Abdollahi MR, Moieni A, Mousavi A, Salmanian AH (2010) High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos. Mol Biol Rep 10.1007/s11033-010-0158-3
  4. Abdollahi MR, Moieni A, Salmanian AH, Mousavi A (2009a) Secondary embryogenesis and transient expression of the $\beta$-glucuronidase gene in hypocotyls of rapeseed microspore-derived embryos. Biologia Plantarum 53(3): 573-577 https://doi.org/10.1007/s10535-009-0104-1
  5. Abdollahi MR, Corral-Martìnez P, Mousavi A, Salmanian AH, Moieni A, Seguì-Simarro JM (2009b) An efficient methods for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31:1313-1317 https://doi.org/10.1007/s11738-009-0365-5
  6. Ali H, Ali Z, Ali H, Mehmood S, Ali W (2007) In vitro regeneration of Brassica napus L. cultivars (Star, Cycloneand Westar) from hypocotyls and cotyledonary leaves. Pak J Bot 39(4):1251-1256
  7. Bade JB (2001) Agrobacterium tumefaciens-mediated transformation of Brassica napus. Ph. d thesis, Leiden University, The Netherlands
  8. Bano R, Khan MH, Khan RS, Hamid Rashid, Zahoor A Swati (2010) Development of an efficient regeneration protocol for three genotypes of Brassica Juncea L. Pak J Bot 42(2):963-969
  9. Burbulis N, Kupriene R, Blistrubiene A (2008) Callus induction and plant regeneration from somatic tissue in spring rapeseed (Brassica napus L.). Biologia Plantarum 54(4) 258-263
  10. Burbulis N, Blinstrubiene A, Kupriene R, Jonytiene V, Rugienius R, Staninen G (2009) In vitro regeneration of Brassica napus L. shoots from hypocotyls and stem segments. Zemdirbyste Agri 96(3):176-185
  11. Cardoza V, Stewart CN (2003) Increased Agrobacteriummediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599-604
  12. Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet 49(4):343-347 https://doi.org/10.1007/BF03195632
  13. Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep 29(4):371-381 https://doi.org/10.1007/s00299-010-0828-6
  14. Chung JH, Kwon KS, Jang HS (2008) Development of transportation bio-energy and its future. Kor J Microbiol Biotechnol 36(1)1-5
  15. Damgaard O, Jensen LH, Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6:279–288 https://doi.org/10.1023/A:1018458628218
  16. Eapen S and George L (1997) Plant regeneration from peduncle segments of oil seed Brassica species: influence of silver nitrate and sliver thiosulfate. Plant Cell Tiss Org Cult 51:229-232 https://doi.org/10.1023/A:1005926108586
  17. Ghnaya AB, G Charles, M Branchard (2008) Rapid shoot regeneration from thin cell layer explants excised from prtioles and hypocotyls in four cultivars of Brassica napus L. Plant Cell Tiss Org Cult 92:25-30 https://doi.org/10.1007/s11240-007-9298-0
  18. Glimelius K (1984) High growth rate and regeneration capacity of hypocotyls protoplasts in some Brassicaceae. Physiol Plant 61:38-44 https://doi.org/10.1111/j.1399-3054.1984.tb06097.x
  19. Hachey JE, Sharma KK, Moloney MM (1991) Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro. Plant Cell Rep 9:549-554
  20. Haddad R, Morris K, Wollaston VB (2002) Regeneration and transformation of oilseed (Brassica napus) using CaMV35S promoter-$\beta$-glucuronidase gene. J Agric Sci Technol 4: 151-160
  21. Haddadi P, A Moieni, G Karimzadeh, MR Abdollahi (2008) Effect of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. $PF_{704}$. Intl J of Plant Prod 2:153-162
  22. Hill, J, Nelson E, Tillman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Soc USA 103:11206-11210. https://doi.org/10.1073/pnas.0604600103
  23. Hu Q, Anderson SB, Hansen LN (1999) Plant regeneration capacity of mesophyll protoplasts from Brassica napus and related species. Plant Cell Tiss Organ Cult 59:189-196 https://doi.org/10.1023/A:1006417530587
  24. Jonoubi P, Mousavi A, Majd A, Daneshian J (2004) Improved Brassica napus L. regeneration from hypocotyls using thidiazuron and benzyladenine as cytokinin sources. Pak J Bot 36(2):321-329
  25. Jonoubi P, Mousavi A, Majd A, Salmanian AH, Javaran MJ, Daneshian J (2005) Efficient regeneration of Brassica napus L. hypocotyls and genetic transformation by Agrobacterium tumefaciens. Biologia Plantarum 49(2):175-180 https://doi.org/10.1007/s10535-005-5180-2
  26. Kamal GB, Lllich KG, Asadollah A (2007) Effect of genotype, explant type nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr J of Biotechnol 6(7):861-867
  27. Khan MR, Rashid H, Quraishi A (2002) High frequency shoot regeneration from hypocotyl of Canola(Brassica napus L.) cv. Dunkled. Plant Tiss Cult 12(2):131-138
  28. Khan I, Ali W, Takar ZA, Frooqi A, Sikandar, Akhtar W (2010) Increased regeneration efficiency of Brassica napus L. cultivars Star, Westar and Cyclone from hypocotyle and cotyledonary explants. Nature Precedings: hdl:10101/npre.2010.4781.1:Posted 17 Aug 2010
  29. Khan MMA, Hassan L, Ahmad SD, Shah AH, Batool F (2009a) In vitro regeneration potentiality of oil seed Brassica genotypes with differential BAP concentration. Pak J Bot 41(3):1233-1239
  30. Khan MA, Arif Hasan Khan Robin ABM, Nazim-Ud-Dowla MAN, Talukder SK, Hassan L (2009b) Agrobacteriummediated genetic transformation of two varieties of Brassica: Optimization of protocol. Bangladesh J Agril Res 34(2):287-301
  31. Kim CS and Lee SH (2006) Economic analysis of a Rape production for Biodiesel. Kor J of Org Agri 14(3):237-249
  32. Kim HJ, Lee HJ, Go YS, Roh KH, Lee, YH, Jang YS, Suh MC (2010) Development of herbicide-tolerant Korean rapeseed(Brassica napus L.) cultivars. J Plant Biotechnol 37:319-326 https://doi.org/10.5010/JPB.2010.37.3.319
  33. Kim KM, Shon JK, Chung JD (1997) Transformation Brassica napus via Agrobacterium vector : plant regeneration and progeny analysis. Kor Plant Tissue Culture 24:269-272
  34. Kong F, Li J, Tan X, Zhang L, Zhang Z, Qi C, Ma X (2009) A new time-saving transformation system for Brassica napus. Afr. J. Biotechnol. 8(11):2497-2502
  35. Lee YJ and Kim GC (2002) The state of the art of biodiesel as a clean diesel alternative. KIER
  36. Li S, Zhao D, Wu YJ, Tian X (2009) A simplified seed transformation methods for obtaining transgenic Brassica napus plants. Agri Sci in China 8(6):658-663 https://doi.org/10.1016/S1671-2927(08)60261-8
  37. Miyasaka Y, Fujii T (1999) Shoot regeneration from explants of seedstalk developed in vitro in Chinese cabbage. Plant Biotechnol 16(2):163-166 https://doi.org/10.5511/plantbiotechnology.16.163
  38. Moghaieb REA, El-Awady MA, El Mergawy RG, Youssef SS, El-Sharkawy AM (2006) A reproducible protocol for regeneration and transformation in canola(Barssica napus L.). Afr J Biotechnol 5(2):143-148
  39. Munir M, Rashid H, Rauf M, Chaudhry Z, Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyl of Brassica napus by using different media combinations. Pak J Bot 40(1):309-315
  40. Ono Y, Takahata Y, Kaizuma N (1994) Effect of genetype on shoot regeneration from cotyledonary explants of rapeseed(Brassica napus L.). Plant Cell Rep 14:13-17
  41. Radke SE, Andrews BM, Moloney MM, Crouch ML, Krid JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefactiens: developmentally regulated expression of are introduced naping ene. Theor Appl Genet 75:685-694
  42. Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Sirchi MHT (2009) Plant regeneration of Brassica oleracea subsp. italica(Broccoli)CV Green Marvelas affected by plant growth regulator. Afr J Biotechnol 8(11):2523-2528
  43. Sharma KK, Bhojwani SS, Thorpe TA (1990) Factors affecting high frequency differentiation of shoots from cotyledon explants of Brassica juncea (L.) Czern. Plant Sci 66:247-253 https://doi.org/10.1016/0168-9452(90)90210-F
  44. Spangenberg, Koop GHU, Lichter R, Schweiger HG (1986) Microculture of single protoplasts of Brassica napus. Physiol Plant 66:1-8 https://doi.org/10.1111/j.1399-3054.1986.tb01223.x
  45. Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1996) Effects of various factors (hormone combinations, genotypes and antibiotics) on shoot regeneration from cotyledon explants in Brassica rapa L. Plant Tiss Cult Lett 13:177-180 https://doi.org/10.5511/plantbiotechnology1984.13.177
  46. Uliaie ED, Farsi M, Ghreyazie B, Imani J (2008) Effect of genotype and AgNO3 on shoot regeneration in winter cultivars of rapeseed (Brassica napus). Pak J Biol Sci 11(16):2040-2043 https://doi.org/10.3923/pjbs.2008.2040.2043
  47. Wang YP, Sonntag K, Rudloff E, Han J (2005) Production of fertile transformation Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breed 124:1-4 https://doi.org/10.1111/j.1439-0523.2004.01015.x
  48. Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sci Lett 24:117-121 https://doi.org/10.1016/0304-4211(82)90016-5
  49. Yang MZ, Jia SR, Pua EC (1991) High frequency of plant regeneration from hypocotyl explants of Brassica carinata A. Br. Plant Cell Tiss Org Cult 24:79-82 https://doi.org/10.1007/BF00039734

Cited by

  1. Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop vol.40, pp.4, 2013, https://doi.org/10.5010/JPB.2013.40.4.185