• Title/Summary/Keyword: bolted web connection

Search Result 28, Processing Time 0.025 seconds

Structural performance evaluation of bolted end-plate connections in a half-through railway inclined girder

  • Jung Hyun Kim;Chang Su Shim
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.473-486
    • /
    • 2023
  • A through-railway bridge with an inclined girder has recently been applied to optimize the cross-section of a slender bridge structure in railway bridges. To achieve the additional cross-section optimization effect by the bolted end-plate connection, it is necessary to investigate the application of the bolted end-plate tension connection between the inclined girder and the crossbeam. This basic study was conducted on the application of the bolted end-plate moment connection of crossbeams to half-through girders with inclined webs. The combined behavior of vertical deflection and rotational behavior was observed due to the effect of the web inclination in the inclined girder where the steel crossbeam was connected to the girder by the bolted end-plate moment connection. Therefore, in the experiment, the deflection of the inclined girder was 1.77-2.93 times greater than that of the vertical girder but the lateral deflection of the inclined girder was 0.4 times less than that of the vertical girder. Moreover, the tensile stress of the upper bolts in the inclined girder with low crossbeams was clearly 0.81 times lower than that of the vertical girder. According to the results, the design formula for vertical girders does not reflect the influence of the web inclination. Therefore, this study proposed the design procedures for the inclined girder to apply the bolted end-plate moment connection of the crossbeam to the inclined girder by reflecting the design change factors according to the effect of the web inclination.

Finite Element Analysis for the Failure Mode of Welded Flange-Bolted Web Connection (Welded Flange-Bolted Web 강접합부의 파괴모드 추정을 위한 유한요소해석)

  • 조창빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.33-46
    • /
    • 1999
  • In spite of 6.8 magnitude and the neighborhood of the epicenter, the steel moment frame survived after Northridge earthquake without collapse or casualties. However, following investigation revealed that there were severe damages at the column-weld interface of welded flange-bolted web (WFBW) steel moment connection, which was believed to be economic and safe from earthquakes based on experience and past tests. In this paper, this unexpected brittle fracture of the steel moment connection is explored using linear elastic fracture mechanics and post-Northridge tests. A method to predict the brittle fracture strength of the steel moment connection is proposed. Using this method, the failure mode of the WFBW connection and reduced beam section (RBS) connection are presented.

  • PDF

Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment (보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol-Ho;Kim, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2004
  • Recent test results on reduced beam section (RBS) steel moment connections showed that specimens with a bolted web tended to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. The measured strain data appeared to imply that a higher incidence of base metal fracture in bolted-web specimens is related to, at least in part, the increased demand on the beam flanges due to the web bolt slippage and the actual load transfer mechanism which is completely different from that usually assumed in connection design. In this paper, the practice of providing web bolts uniformly along the beam depth was brought into question. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, was proposed together with improved connection details.

Seismic Design and Testing of Reduced Beam Section Steel Moment Connections with Bolted Web Attachment (웨브를 볼트로 접합한 보 플랜지 절취형(RBS) 철골모멘트접합부의 내진설계 및 성능평가)

  • Lee, Cheol Ho;Kim, Jae Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.689-697
    • /
    • 2005
  • Recent test results on reduced beam section (RBS) steel moment connections show that specimens with a bolted web connection tend to perform poorly due to premature brittle fracture of the beam flange at the weld access hole. A review of previous test results indicates that the higher incidence of base metal fracture in bolted-web specimens is related, at least in part, to the web bolt slippage and the high stress concentration at the weld access hole with the lowest material toughness. The practice of providing web bolts uniformly along the beam depth based on the classical beam theory is questioned in this paper. A new seismic design procedure, which is more consistent with the actual load path identified from the analytical and experimental studies, is proposed together with improved connection details. A test specimen designed following the proposed procedure exhibited a cyclic connection rotation capacity sufficient for special moment frames without fracture.

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

Numerical cyclic behavior of T-RBS: A new steel moment connection

  • Ataollahi, Saeed;Banan, Mohammad-Reza;Banan, Mahmoud-Reza
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1251-1264
    • /
    • 2016
  • After observing relatively poor performance of bolted web-welded flange beam-to-column connections during 1994 Northridge earthquake, various types of connections based on two concepts of: (i) strengthening the connection; and (ii) weakening the beam ends were proposed. Among these modified or newly proposed connections, bolted T-stub connection follows the concept of strengthening. One of the connections with the idea of weakening the beam ends is reduced beam section (RBS). In this paper, finite element simulation is used to study the cyclic behavior of a new proposed connection developed by using a combination of both mentioned concepts. Investigated connections are exterior beam-to-column connections designed to comply with AISC provisions. The results show that moment capacity and dissipated energy of the new proposed connection is almost the same as those computed for a T-stub connection and higher than corresponding values for an RBS connection.

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.