• Title/Summary/Keyword: body temperature

Search Result 3,018, Processing Time 0.03 seconds

Influences of Body Fluid on Crossed Thermal Effects (체수분이 교차성 열효과에 미치는 영향)

  • Lee, Sang-Un;Kanazawa, Yoshinori;Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.2
    • /
    • pp.151-157
    • /
    • 2002
  • This study examined the changes in body temperature through conductive heat applied to the body and clarified the influences of body fluid on the thermal effects. Body fluid was measured using the Segmental Bioelectrical Impedance Analysis method. The subjects consisted of 13 men and 14 women. TBW was 37.56 (4.35 L for men and 29.93 (3.12 L for women, with the former being significantly (p<0.01) higher. The amount of body fluid in the right and left legs was 6.46 (0.83 L and 6.39 (0.86 L for men and 4.78 (0.49 L and 4.78 (0.49 L for women, respectively, with men's values being significantly (p<0.01) higher than women's on both the right and left sides. The maximal change in the surface temperature was 33.93 (0.61(C at the start of a warm bath to 3407 (0.61(C after 14 min for men. In contrast, the maximal change was 33.38 (0.99(C at the start to 33.73 (0.86(C after 18 min for women. For the other sites, the maximal temperature in Depths 1 and 2 was attained earlier for men than for women. The decrease in body temperature after the end of warming was more remarkable for men. Men had fluid with a higher conductivity than women, indicating influences of body fluid on the changes in body temperature. There were few changes in body composition with a partial bath having a crossed effect, indicating that this is a safe therapeutic method for elderly people.

  • PDF

Comparison of the Effect of Applying Polyethylene Wrap and Aircap in Maintaining Body Temperature of Preterm Infants (폴리에틸렌 랩과 에어캡의 적용이 미숙아의 체온 유지에 미치는 효과)

  • Lee, Eun Sook;Lee, Han Na;Park, Ji Hyun
    • Journal of Korean Clinical Nursing Research
    • /
    • v.26 no.2
    • /
    • pp.232-239
    • /
    • 2020
  • Purpose: This study was an quasi-experimental study to compare the effect of applying polyethylene wrap and aircap in maintaining body temperature of preterm infants. Methods: The participants were 51 preterm infants. Aircap was applied to the experimental group (n=23) and polyethylene wrap was applied to the control group (n=28) when the preterm infants admitted to neonatal intensive care unit. The data was collected at W hospital in J-province from June 2016 to May 2017. A total of 9 body temperature measurements were taken at 3 hours interval from 5 min to 24 hours after admission. Repeated measure ANOVA, independent t-test and χ2 test were conducted used with SPSS/WIN 24.0 Results: There were no significant difference in the homogeneity tests for general characteristics and dependent variables prior to the experiments (t=0.57, p=.566). There was a significant difference on body temperature of preterm infants over time (F=3.24, p=.020). There was no significant difference on body temperature between polyethylene wrap and aircap application groups (F=1.29, p=.261). The interaction between the group and the time was insignificant (F=1.51, p=.214). Conclusion: The findings demonstrated that both methods of applying polyethylene wrap and aircap on the body in preterm infants had effect in maintaining body temperature.

Establishment of Data Base for Body Temperature Change in Cattle (소의 일중 체온변화 Data Base 구축에 관한 연구)

  • Jeong, Wang-Yong;Yi, One-Hyeon;Lee, Sang-Cheol;Lee, Sang-Rak
    • Journal of Animal Environmental Science
    • /
    • v.18 no.2
    • /
    • pp.95-98
    • /
    • 2012
  • A normal body temperature data base for cattle was established to utilize for automatic monitoring of abnormal body condition of cattle by using sensor network and radio frequency identification technology. Three castrated Holstein cattle (mean body weight: $318{\pm}12kg$) were employed for body temperature measurement. Animals were adapted at the stanchion barn over 2 weeks, and 4 places (skins of ear, neck, head and subcutaneous tissue of neck) of body temperatures were continuously measured through thermocouples and recorder devices for 9 days. All places of body temperatures were fluctuated throughout the day and showed a cyclic pattern, with higher temperature in day time and lower temperature in nigh time. Normal subcutaneous tissue temperature (core temperature) in a day was ranged from $36.1^{\circ}C$ to $38.2^{\circ}C$. Skin temperatures were varied largely with environmental temperature change. Ear, head and neck temperatures varied with $36.3{\sim}28.5^{\circ}C$, $36.1{\sim}28.0^{\circ}C$ and $35.0{\sim}28.2^{\circ}C$, respectively. In this study, we established a basic data base for normal body temperature in cattle. For more effective data base, it would be needed further study.

Comparison of Photobiomodulation Therapy Types for Adults with Chronic Pain

  • Choi, Jae-Hee;Lee, Sun-Woong;Kim, Sang-Won;Lee, Keun-Mi;Jung, Seung-Pil
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.185-192
    • /
    • 2021
  • Purpose : Our study aimed to compare the effectiveness of low-level laser therapy (LLLT) and light-emitting diode therapy (LEDT) for chronic pain intensity reduction and body temperature increase in older adults with chronic pain. Methods : Overall, 144 of 332 participants' records were used in this retrospective chart review. The study was conducted at a private health center in Busan city and the integrative medical center of a tertiary care hospital in Daegu city, South Korea. Patients experiencing chronic pain for over 6 months were assigned to either the LLLT or LEDT group. Both groups underwent 16 sessions of phototherapy held twice a week for 8 weeks, with each session lasting 60 minutes. The primary outcomes for both groups were the mean visual analogue scale (VAS) scores and body temperatures in both groups. The secondary outcome was the correlation between changes in body temperature and pain intensity. Measurements were recorded at the baseline and at each follow-up session. Results : A decrease in pain intensity and an increase in body temperature (p<.001) were observed in both groups. There was a significant difference in the VAS scores and temperature changes between the groups (p<.001). Odditionally, there were significant differences in the patterns of change in the VAS score and body temperature between the groups as the sessions progressed (p<.01), and a strong inverse correlation between body temperature and pain intensity changes were observed (p<.01). Conclusion : The use of photobiomodulation therapy at a specific wavelength may improve pain severity and simultaneously increase the body temperature among elderly people with chronic pain.

The Effect of Electrical Stimulation on the Changes of Skin Temperature in Normal and Low Back Pain Patients (전기자극이 정상인과 요통환자의 체표면 온도 변화에 미치는 영향)

  • Park, Don-Mork;Lim, Jung-Do
    • Journal of Korean Physical Therapy Science
    • /
    • v.5 no.4
    • /
    • pp.817-830
    • /
    • 1998
  • The purpose of this study is to investigate the relationship between effects of TENS (Transcutaneous Electrical Nerve Stimulation) and IFC(Interferrential Current Therapy) to the change of body surface temperature. Cases are 22 normal persons and 22 patients with low back pain. Digital Infrared Thermal Imaging system was used for the detection of body surface temperature. 50Hz in frequency and 25-35mA in intensity were applied to TENS and IFC, 15 and 10 minutes on each. The results were follows ; 1. TENS and IFC has on effect of decreasing surface temperature, which would be from cardiovascular factors. (P<0.001) 2. The influence of IFC to the body surface temperature is greater than TENS, and it seems to be vasoconstriction of sympathetic activity. 3. There were no significant differences of body surface temperature between the two groups before and after electrical stimulation.

  • PDF

A research on the sychronized clock pulse for the measurement of physical function. (안정된 동기시신호발생을 이용한 인체 기능의 측정에 관한 연구)

  • Lee, Haing-Se;Lee, Sang-Hyeok;Kim, Yong-Deuk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.5
    • /
    • pp.9-16
    • /
    • 1976
  • This paper deals with a method of measuring the temperature, purse, and pressure of a human body The temperature controlled oscillator was designed with a thermistor as a temperature measuring part The error in temperature was less than $\pm$0.05$^{\circ}C$ in the range of the temperature of a human body.

  • PDF

An Experimental Study on the Shortest optimum time for Body Temperature measurement (체온측정에 필요한 최단적정시간규명을 위한 실험적 연구)

  • 홍여신;이선옥
    • Journal of Korean Academy of Nursing
    • /
    • v.5 no.2
    • /
    • pp.38-50
    • /
    • 1975
  • This study was conducted to find the shortest optimum time for taking oral temperature and axillary temperature, which does not affect reliability of body temperature. For this purpose, first, the time at which all the samples are reaching maximum temperature is identified Second, the mean maximum temperature is compared with the mean temperature of each consecutive measurement by T-test to find the time at which no significant changes in temperature occurs along time sequence. Third, optimum temperatures are set at points of -0.2℉, -0.4℉, -0.6℉, -0.8℉, -1.0℉, -1.2℉, -1.4℉, from maximum temperature. A point of time at which 90% of samples reach at optimum temperature is identified and defined as optimum time. The study sample, a total of 164 cases were divided into two groups according to their measured body temperature. The group with body temperature below 37 $^{\circ}C$(A group) and above 37$^{\circ}$1'C (B group) were compared on the time required to reach maximum temperature and optimum temperature. The results are as follow. 1. The time required for total sample to reach maximum temperature was 13 minutes in both groups by oral method, 15 minutes in A group and 13 minutes in B group by axillary method. Time required for 90 % of cases reach maximum temperature by oral method was 10 minutes in both group. By axillary method, 12 minutes in A group. (Ref: table 2) 2. Statistical analysis by means of T-test, the time which does not show a significant change by oral method were 12 minutes in A group and 11 minutes in B group, and by axillary method 14 minutes in A group and 11 minutes in B group. (Ref: table 5, 6.) 3. Where optimum temperature was defined as maximum temperature minus 0.2 ℉, optimum time was found 8 minutes in both groups by oral method, and 11 minutes in A group and 9 minutes in B group by axillary method 4. Where optimum temperature was defined as maximum temperature minus 0.4 ℉, optimum time was found 7 minutes in A group and 6 minutes in B group by oral method, and 9 minutes in A group and 7 minutes in B group by axillary method 5. Where optimum temperature was defined as maximum temperature minus 0.8 ℉, optimum time was found 6 minutes in A group and 6 minutes in B group by axillary method (Ref: table 7, 8, 9, 10) 6. The commonly practiced temperature taking time, 3 minutes in oral method and 5 minutes in axillary method can be accepted as pertinent when physiological variation of body temperature at the mean level of -1, 2 ℉ is accepted. 7. The difference in time required to resister maximum temperature was compared between the group with body temperature below 37$^{\circ}C$ and above 37$^{\circ}$1'C, and found no significant difference in oral mettled and 1 - 4 minute difference in axillary method with shorter time requirement in feverish group.

  • PDF

The Relationship between Clothing Microclimate and Physiological Responses at $15^{\circ}C$ Environment ($15^{\circ}C$ 환경에서 의복기후와 인체생리반응과의 관련성)

  • Park, Joon-Hee;Choi, Jeong-Wha
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.4
    • /
    • pp.97-105
    • /
    • 2008
  • The objective of this study is to investigate the relationship between clothing microclimate and physiological responses, including subjective sensations, when, in a $15^{\circ}C$ environment, a range of temperatures inside clothing is broadly produced from using various combinations of upper and lower garments. Six male subjects participated in the investigation and the results were as follows. For all types of inside garments, the temperature of the clothing was lower than the skin temperature for the whole body in each case. The mean temperature for inside clothing ($\bar{T}_{cl}$) significantly showed the highest correlation with mean weighted skin temperature (r = 0.816) and was less positively correlated with the temperature of the inside clothing at the chest (r = 0.326) (p < .01). Values for both the energy expenditure and the heart rate were less positively correlated with the clothing microclimate (p < .01). The change of body heat content showed a negative correlation with the surface temperature of the innermost clothing (r = -0.519) and there was a difference between the innermost surface temperature and the outermost surface temperature of the clothing at the chest (r = -0.577). As td increased, the increase of body heat content declined (p < .01). There was a negative correlation between body fat and some of the temperatures inside the clothing (p < .01) and body fat had no significant correlation with the humidity inside the clothing. Subjective sensations were more highly correlated with $\bar{T}_{cl}$ than with the temperature of the inside clothing at the chest and had not significantly correlation with the humidity of the inside clothing. In conclusion, through these results, it can be seen that the temperature inside the clothing was related to various physiological responses and subjective sensations, and that the mean temperature of the inside clothing ($\bar{T}_{cl}$) showed a higher relationship with the temperature of the inside clothing at the abdomen than that at the chest.

Effect of Temperature on the Growth and Microstructure of Fruit Body in the Basidiomycetes, Pleurotus ostreatus (느타리버섯 자실체의 생육 및 미세구조에 미치는 온도의 영향)

  • Yoon Seon-Mee;Ju Young-Cheoul;Seo Gun-Sik;Chi Jeong-Hyun
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.225-230
    • /
    • 2006
  • To elucidate the effect of temperature on the fruit body growth and structure of pleurotus ostreatus cultivar Chunchu No.2, microstructures were observed with scanning- and transmission electron microscope. Pileocystidia were well developed on the surface of pileus in the fruit body cultivated at $7^{\circ}C$. As the increasing temperature for fruit body development, thickness of pileus, thickness of stipes and length of stipes shown thin, thick and long, respectively. Color of pileus was also changes to whitish grown under high temperature. Physical structure shown as hardness and gumminess of stipes grown at high temperature, fruit body were soften than that of low temperature. Microstructures of fruit body grown at high temperature shown fast-discharge of basidiospore and sytoms aging. vacuolation in the cell observed at mycelium grown under high temperature. Optimum temperature for vegetative growth of fruit bodies were $15^{\circ}C$, and shown regular arrangement of mycelium on the surface of stipes.

Effect of Body Fat on Thermophysiological Responses at a Hot Environment (체지방률이 서열환경하의 온열생리에반응에 미치는 효과)

  • Kim, Hee-Eun;Kim, Seong-Suk
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The Purpose of this study was to investigate the effect of body fat on thermophysiological responses and subjective sensations under hot environment. Fifteen female college students volunteered as subjects. Subjects were organized into three groups - low body fat group(L group : less than 20% of body fat), medium body fat group(M group : 20%~30% of body fat) and high body fat group(H group : More than 30% of Body fat). The experiment was carried out in a climate chamber of $32^{\circ}C$, 60%RH with the repeat of having 'Exercise' and 'Rest' period. The results of this study are as follows ; Rectal temperature maintained higher in M group and L group than in H group in the period of exercise 1. High body fat was so effective in keeping the core temperature, it seems that as was usually the case in cold environment. The mean skin temperature was the lowest value in H group but the ratio of mean skin temperature change was clearly high value in H group. The above facts indicated that thermophysiological response occurs rapidly in H group. Blood pressure, pulse rate and metabolic rate of H group showed the highest values and those of L group showed the lowest value in all period of experiment. Effective of sweating rate was higher in H group than other groups. In subjective sensations, The H group felt more pleasant and comfortable than M group. With these results in mind, people of H group responses more actively for thermal regulation in a hot environment, and these leads H group to feel more pleasant and comfortable.