• Title/Summary/Keyword: bluff bodies

Search Result 30, Processing Time 0.027 seconds

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.

Mixing Enhancement/Suppression of Separated-and-Reattaching Flow by an Upstream Small Object

  • IINVMA, Yusuke;FUNAKI, Jiro;HIRATA, Katsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.106-110
    • /
    • 2004
  • Generally, flow around a bluff body such as a circular cylinder is complicated compared with that around a streamlined body because of the existence of separated shear layers. Long bluff body such as a flat blunt plate is more complicated than short bluff body, because of separated-and-reattaching flow on the after bodies.(omitted)

  • PDF

Numerical Analysis on Flow Phenomena of the Wake behind the Rectangular Obstacle in the Channel (관내 사각지주 후류의 유동현상에 대한 수치해석)

  • Min Yeong-Ui;Kim Yeon-Soo;Kim You-Gon
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.22-31
    • /
    • 2001
  • The two-dimensional unsteady incompressible viscous flow behind rectangular bluff bodies between two parallel plates was analyzed numerically. The steady state flow and the vortex flow behind rectangular bluff bodies in the channel were investigated for two regimes i.e., the laminar(Re = 100, 300, 500) and the turbulent flows(Re = 10⁴∼10/sup 6/). The vortex shedding was generated by a physical disturbance(6%) numerically imposed at the rear of the bluff bodies for a short time. It was observed that the perturbed flow became periodic after a transient period. And in the case of unsteady inflow, the sinusoidal pulsatile flow was applied as the inlet condition in the turbulent flow of Reynolds number of 1.0×10/sup 5/. FLUENT code was employed to solve the problems. The power-law scheme was used to get stable linearized equations and the PISO algorithm was applied to finding the solution of them.

  • PDF

CFD calculations of indicial lift responses for bluff bodies

  • Turbelin, Gregory;Gibert, Rene Jean
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.245-256
    • /
    • 2002
  • Two-dimensional formulations for wind forces on elongated bodies, such as bridge decks, are reviewed and links with expressions found in two-dimensional airfoil theory are pointed out. The present research focus on indicial lift responses and admittance functions which are commonly used to improve buffeting analysis of bluff bodies. A computational fluid dynamic (CFD) analysis is used to derive these aerodynamic functions for various sections. The numerical procedure is presented and results are discussed which demonstrate that the particular shapes of these functions are strongly dependent on the evolution of the separated flows around the sections at the early stages.

Computation of unsteady wind loading on bluff bodies using a discrete vortex method

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.285-303
    • /
    • 1999
  • A discrete vortex method (DVM) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady, incompressible, separated flows around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow. This paper gives a brief description of the method and presents the results of calculations on static and transversely oscillating square section cylinders. The results demonstrate that the method successfully predicts the character of the flow field at different angles of incidence for the static case. Vortex lock-in around the resonance point is successfully captured in the oscillatory cases. It is concluded that the vortex method results show good agreement, both qualitatively and quantitatively, with results from various experimental data.

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.67-81
    • /
    • 2022
  • While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Active Control Methods for Drag Reduction in Flow over Bluff Bodies (뭉툭한 물체 주위 유동에서 항력 감소를 위한 능동 제어 방법)

  • Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, we present two successful results from active controls of flows over a circular cylinder and a sphere for drag reduction. The Reynolds number range considered for the flow over a circular cylinder is 40-3900 based on the free-stream velocity and cylinder diameter, whereas for the flow over a sphere it is $10^{5}$ based on the free-stream velocity and sphere diameter. The successful active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing. With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing at a high frequency (larger than 20 times the vortex shedding frequency) produces $50{\%}$ drag reduction for the flow over a sphere at $Re=10^{5}$. The distributed forcing applied to the flow over a circular cylinder results in a significant drag reduction at all the Reynolds numbers investigated.

  • PDF

An Analysis of 2-D Bluff Bodies Flows by Multi-Vision PIV (Multi-Vision PIV에 의한 2차원 단순물체의 유동장 해석)

  • Song, K.T.;Lee, H.;Kim, Y.T.;Lee, Y.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.573-580
    • /
    • 2002
  • Animation and time-resolved analysis of the wake characteristics of 2-D bluff body flows were examinated by applying the multi-vision PIV to square cylinders(three angles of attack: $0^{circ}, 30^{circ} and 45^{\circ}$) and circular cylinders(three rotating speeds: 0rpm, 76rpm, 153rpm) submerged within a circulating water channel $(Re=10^4)$, The macroscopic shedding patterns and their dominant frequencies were discussed in terms of instantaneous velocity, vorticity and turbulent quantities such as turbulent intensity, turbulent kinetic energy and three Reynolds stresses. Particularly the time-averaged distribution of turbulent intensity 'islands' where their peak magnitudes were focused always small regions behind the bodies without noticeable spatial migration were particularly discovered in all cases. And the dominant frequencies of the turbulent quantities in the wake regions were two times larger than those of the velocity and vorticity.

Effect of blockage on the drag of a triangular cylinder

  • Yeung, W.W.H.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • A method is presented to estimate the form drag and the base pressure on a triangular cylinder in the presence of blockage effect. The Strouhal number, which is found to increase with the flow constriction experimentally by Ramamurthy & Ng (1973), may be decoupled from the blockage effect when re-defined by using the velocity at flow separation and a theoretical wake width. By incorporating this wake width into the momentum equation by Maskell (1963) for the confined flow, a relationship between the form drag and the base pressure is derived. Independently, the experimental data of surface pressure from Ramamurthy & Lee (1973) are found to be independent of the blockage effect when expressed in terms of a modified pressure coefficient involving the pressure at separation. Using the potential flow model by Parkinson & Jandali (1970) and its subsequent development in Yeung & Parkinson (2000) for the unconfined flow, a linear relation between the pressure at separation and the form drag is formulated. By solving the two equations simultaneously with a specified blockage ratio and an apex angle of the triangular cylinder, the predictions of the drag and the base pressure are in reasonable agreement with experimental data. A new theoretical relationship for the Strouhal number, pressure drag coefficient and base pressure proposed in this study allows the confinement effect to be appropriately taken into consideration. The present approach may be extended to three-dimensional bluff bodies.

On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In this work the flow through a hollow porous 5:1 rectangular cylinder made of perforated plates is numerically investigated by means of 2D URANS based simulations. Two approaches are adopted to account for the porous surfaces: in the first one the pores are explicitly modeled, so providing a detailed representation of the flow. In the second one, the porous surfaces are modeled by means of pressure jumps, which allow to take into account the presence of pores without reproducing the flow details. Results obtained by using the two aforementioned techniques are compared aiming at evaluating differences and similarities, as well as identifying the main flow features which might cause discrepancies. Results show that, even in the case of pores remarkably smaller than the immersed body, their arrangement can lead to local mechanisms able to affect the global flow arrangement, so limiting the accuracy of pressure jumps based simulations. Despite that, time-averaged fields often show a reasonable agreement between the two approaches.