• Title/Summary/Keyword: blue emission

Search Result 617, Processing Time 0.024 seconds

Synthesis and Characterization of Poly(fluorenylenevinylene-terphenylenevinylene) Containing Phenyl Pendant Group

  • Kim Yun-Hi;Jung Sung-Ouk;Lee Kwang-Hoi;Kwon Soon-Ki
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • Poly(fluorenylenevinylene-terphenylenevinylene) containing phenyl pendant group was synthesized by Suzuki coupling reaction and characterized by ${1}^H$-NMR, ${13}^C$-NMR, and IR-spectrum. The weight average molecular weight ($M_{w}$) of the obtained polymer was 31,000 with a polydispersity index of 1.9. The polymer showed good solubility in common organic solvents, and the solution and film emitted blue emission ($\lambda_{max}$=460 nm) on irradiation with UV light. The ITO/PEDOT/polymer/Al device fabricated using the polymer as an emitting layer emitted blue light with a maximum peak around 460 nm. The maximum efficiency of the device was 0.011$\%$.

Effects of Emission Layer Thickness on the Efficiency of Blue Phosphorescent Organic Light Emitting Diodes with Triple Layer Structure (발광층 두께가 삼층 구조 청색 인광 OLED의 효율 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.143-147
    • /
    • 2010
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses of N,N'-dicarbazolyl-3,5-benzene (mCP) host layers doped with bis[(4,6-di-fluorophenyl)-pyridinate-N,$C^{2'}$]picolmate (FIrpic) guest materials. The thicknesses of mCP:FIrpic layers were 5, 10, and 30 nm. Driving voltage, current and power efficiencies were investigated. The current efficiency was higher in the 10 nm thick mCP:FIrpic device, resulting from the better electron-hole balance. The device with 10 nm mCP:FIrpic layer exhibited the maximum current efficiency of 22.5 cd/A and power efficiency of 7.4 lm/W at a luminance of 1000 cd/$m^2$.

Growth and Characterization of I $n_{x}$G $a_{1-x}$N Epitaxial Layer for Blue Light Emitter (청색발광소자를 위한 I $n_{x}$G $a_{1-x}$N 결정성장 및 특성평가)

  • 이숙헌;이제승;허정수;이병규;이승하;함성호;이용현;이정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.15-23
    • /
    • 1998
  • Single crystalline I $n_{x}$G $a_{1-x}$ N thin film was grwon by MOCVD on (001) sapphire substrate for the blue light emitting devices. A good quality of I $n_{0.13}$G $a_{0.87}$N/GaN heterostructure grwon above 700.deg. C was confiremed by various characterization techniques of AFM, RHEED and DC-XRD. Through PL measurement at room temperautre for the Si-Zn co-doped I $n_{x}$G $a_{a-x}$N/GaN structure grwon at 800.deg. C to obtain blue wavelength emission, 460-470 nm and 425 nm emission peak were observed, which are believed to be from donor-to-acceptor pair transition and band edge emission of In/x/G $a_{1-x}$ N, respectively. The result of PL measurement of the undoped MQW I $n_{x}$G $a_{1-x}$ N layer at low temperature confirmed that the strong MQW peak was resulted by exciton from the GAN barrier and carrier of DA pair confined into the well layer.ll layer.yer.r.

  • PDF

Emission Characteristics of White Organic Light-Emitting Diodes Using Micro Lens Array Film (Micro Lens Array Film을 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.93-97
    • /
    • 2013
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with co-doping and blue/co-doping emitting layer (EML) structures were fabricated using a host-dopant system. The total thickness of light-emitting layer was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir(acac)$ in UGH3, respectively. In case of co-doping structure, applying micro lens array film showed efficiency improvement from the current efficiency 78.5 cd/A and power efficiency 40.4 lm/W to the current efficiency 131.1 cd/A and power efficiency 65 lm/W and blue / co-doping structure showed efficiency improvement from the current efficiency 43.8 cd/A and power efficiency 22 lm/W to the current efficiency 69 cd/A and power efficiency 32 lm/W.

Synthesis and Light-Emitting Properties of Zinc Chelate Compounds (아연 킬레이트 화합물의 합성 및 전계발광 특성)

  • Kim, Hong-Soo;Nam, Ki-Dae;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.292-297
    • /
    • 2001
  • Zinc complexes with Bis[2-(o-hydroxyphenyl) benzothiazolato ligands (ZnPBS-0) and Bis[2- (o-hydroxynaphthyl) benzothiazolato ligands (ZnPBS-05) were synthesized, and luminescent properties of these materials were investigated. The emission band found that it strongly depends on the molecular structure of introduced ligand and was tuned from 525 nm to 535 nm by changing the ligand structures. Spreading of the ${\pi}-conjugation$ in 2-(o-hydroxyphenyl) group gives rise to a blue shift. On the other hand, spreading of the ${\pi}-conjugation$ in benzothiazole groups leads to a red shift. The EL properties also showed good consistency with their differences of ligand structure. Bright-blue EL emission with a maximum luminance of 8300 $cd/m^{2}$ at 11V was obtained from the organic light - emitting diodes (OLEDs) using ZnPBS-0 as emitting layer. It was also found that the newly synthesized materials were suitable to be used as emitting materials in organic EL device.

Preparation and Luminescent Properties of GdOBr:Ce Blue Phosphors for FED (FED용 GdOBr:Ce 청색 형광체의 제조 및 발광특성)

  • Lee, Jun;Park, Joung-Kyu;Han, Cheong-Hwa;Park, Hee-Dong;Yun, Sock-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.240-244
    • /
    • 2002
  • The GdOBr:Ce phosphor were prepared by solid state reaction using starting chemicals of $Gd_2O_3,\;CeO_2\;and\;NH_4Br$. Under 370nm UV excitation, GdOBr:Ce phosphors showed blue emission band with a spectral range of 410∼430nm. The maximum photoluminescence(PL) emission intensity was observed at 2mol% Ce content. In order to look for feasibility of application for low voltage filed emission display, cathodoluminescence(CL) of GdOBr:Ce phosphors were measured. CL emission spectra was found to be in the range of 410∼430nm, which is the same as PL spectra. The phosphors with 1mol% Ce concentration showed the maximum CL emission intensity. For the comparison of degradation property of the prepared phosphors with commercial ones, the electron beam was applied for 10min. From the result, GdOBr:Ce could be used as a blue phosphor for FED.

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF

White Light-Emitting Diodes Using Conjugated Polymer Blends

  • Hwang, Do-Hoon;Park, Moo-Jin;Kim, Suk-Kyung;Lee, Chang-Hee;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.585-587
    • /
    • 2004
  • We report the characterization of white light emitting devices fabricated using conjugated polymer blends. Blue emissive poly[9,9-bis(4'-n-octyloxyphenyl) fluorene-2,7-diyl-co-10-(2'-ethylhexyl)phenothiazine-3,7-diyl] [poly(BOPF-co-PTZ)] and red emissive poly(2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV) were employed in the blends. The inefficient energy transfer between these blue and red light emitting polymers (previously deduced from the PL spectra of the blend films) enables the production of white light emission through control of the blend ratio. The PL and EL emission spectra of the blend systems were found to vary with the blend ratio. The EL devices were fabricated in the ITO/PEDOT/blend/LiF/Al configuration and white light emission was obtained for one of the tested blend ratios.

  • PDF

Photo- and Cathod-luminesent Properties of $YNbO_4$ : Bi Phosphors ($YNbO_4에\;Bi^{3+}$가 도핑된 형광체의 빛발광 및 저전압 음극선발광 특성)

  • 한정화;김현정;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.245-250
    • /
    • 1998
  • Field emission display (FED) is currently being explored as a potential flat panel display technology. The need of new materials for low voltage blue phosphors for FED focused our attention on the $Y_2O_3-Nb_2O_5$ sys-tem. Yttrium niobate doped with $Bi^{3+}$ was prepared by solid state reaction technique and the optimization of the luminescent properties with a control of $Bi^{3+}$ amounts and Y/Nb ratio was studied. Under 254 nm and low voltage electron excitations $Bi^{3+}-activated$ YNbO4 phosphors showed a strong and relatively narrow blue em-ission band with a range of 420 to 450 nm, Especially 0.4wt% $Bi^{3+}\;doped\;YNbO_4$ phosphors with Y/Nb ratio of 1/1 showed the maximum emission intensity. Under low voltage electron excitation maximum emission in-tensity appeared at the Y/Nb ratio of 0.495/0.505.

  • PDF