• 제목/요약/키워드: blow forming

검색결과 38건 처리시간 0.023초

유한요소법을 이용한 PET병의 성형 공정 해석 (Analysis of Forming Processes of PET Bottle using a finite Element Method)

  • 주성택;김용환;류민영
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

열간가스성형용 알루미늄 개발 합금 공정 조건에 관한 연구 (Study on an Aluminum Modified Alloy and Manufacturing Conditions for Hot Metal Gas Forming)

  • 이경민;고건영;이현철;김동옥;이윤교;김정섭;송종호
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.222-227
    • /
    • 2017
  • In order to respond to environmental regulations and increased demand for fuel economy, the demand for lightweight car bodies has grown. Hydroforming of aluminum is one possible solution as it eliminates the need for additional welding to develop closed cross-sectional parts. However, the low formability of aluminum is a limitation of its application. On the other hand, the ductility of materials can be improved at higher temperatures, and hot metal gas forming has been widely applied in the production of lightweight vehicle parts. In this study, aluminum alloy for pipe extrusion was developed by controlling the Mg:Cr:Mn ratio based on AA5083. Mechanical properties of the developed material were examined by tensile test and were applied to a forming simulation. Cold forming simulation for preforming and non-isothermal hot forming simulation for hot metal gas forming were carried out to validate process conditions. A prototype of the sidemember was manufactured under the given process condition. Finally, thickness distribution was compared with finite element analysis results.

투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구 (A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature)

  • 이호진;안동규
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구 (A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts)

  • 양화준;황보중;이석희
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

강소성 유한 요소법을 이용한 냉간 2단 헤딩가공에 있어서 CAD / CAPP 시스템의 구축에 대한 연구 1) (A Study on Stucture of CAD / CAPP System in th e Heading Process Using Rigid-Plastic Finite Element Analysis)

  • 신영우
    • 수산해양기술연구
    • /
    • 제30권1호
    • /
    • pp.53-63
    • /
    • 1994
  • 1) 강소성 유한 요소법 프로그램 RDHPSC는 2단헤딩 가공에 있어서의 신뢰 할 수 있는 해석수단이다. 2) RDHPSC에 의한 2단헤딩의 해석은 2단헤딩가공에서의 최적 가공 조건의 결정에 유용한 정보를 제공할 수 있다. 3) 2단헤딩 가공중의 금속흐름을 수치해석에서의 격자 변형에 의해 관찰될 수 있다. 4) 2단헤딩 가공중의 표면 결함의 발생가능성은 수치해석 결과에서 원수방향응력과 계수 D를 관찰함으로서 탐색되어질 수 있다. 5) 2단헤딩가공중에 있어서의 내부결함 발생가능성은 수치해석의 격차 변형을 통하여 알 수 있다. 6) 마무리 가공금형 수명에 대한 최적가공조건은 수치해석에서의 접촉압력을 조사하여 얻을 수 있다.(이 논문의 결론부분임)

  • PDF

초소형재료의 펀치성형에 관한 유한요소해석 (Finite Element Analysis of Punch Forming of Superplastic Materials)

  • 허훈;이기석;최영준
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.440-449
    • /
    • 1996
  • Superplastic punch forming of sheets is simulated by a finite element method to obtain the optimal punch speed and the related deformed shapes. The punch forming has an advantage of guaranteeing the desired accuracy inside a product and controlling the thichness of a deformed sheet more accurately than blow forming. The finit element code developed is associated with the contact algorithm and the control algorithm of punch speed for the optimum forming. The simulation demonstrates that the variation of the thichness in a blank sheet affects the punch speed and the final distribution of the thichness in a product. The analysis proposes that a ring-typed thichness controller is very effective in controlling the thichness of a deformed sheet appropriately.

대형 크랭크샤프트의 형단조에 관한 실험적 및 수치적 연구 (Experimental and Numerical Study on Closed Die Hot Forging of a Large Crankshaft)

  • 조범재;이민철;김홍태;박태현;제갈영진;최인수;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2008
  • We apply a closed die forging technology to a large crankshaft of which forging weight amounts to 850kg. 40ton counter-blow hammer forging machine is used. The forging process is optimized to reduce the forming load using finite element simulation. AFDEX 3D is used for forging simulation. The experiment is compared with finite element prediction and a good agreement is observed. The successful development of a large crankshaft by the closed die forging technology will contribute to opening a new area of closed-die forging application and to enhancing competitiveness of national machinery industries especially including ship part and power generation industries.

  • PDF

초소성재료의 압력성형에 관한 삼차원 유한요소해석 (3-D Finite Element Analysis of Superplastic Blow Forming)

  • 이기석;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

Computing transient flows with high elasticity

  • Roger I. Tanner;Xue, S-C
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.143-159
    • /
    • 2002
  • Although much progress has been made in the computation of Eulerian steady flows with high viscoelasticity, less work has been done for the case of transient flows. Because of their importance in injection moulding, blow moulding and other forming processes, as well as their Intrinsic interest, we believe more attention should be focussed in this area. Hence in this paper we review progress in unsteady flow computations with high elasticity, and show some new results in this area.