• Title/Summary/Keyword: blood ionized $Mg^{2+}$

Search Result 5, Processing Time 0.025 seconds

Blood Electrolytes and Metabolites in Rat Model of Acute Metabolic and Respiratory Alkalosis (흰쥐 급성 대사성 알칼리증과 호흡성 알칼리증 모델에서 혈액 전해질 및 대사산물)

  • Kim, Shang-Jin;Lee, Mun-Young;Kim, Jin-Shang;Kang, Hyung-Sub
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.257-261
    • /
    • 2010
  • The development of blood ionic changes could be precipitated in acid-base disorder and subsequent treatment. As technology for detecting circulating ionized $Mg^{2+}$ (the most interesting form with respect to physiological and biological properties) is now available in veterinary clinical medicine. This present study investigated the changes of whole blood ionized $Mg^{2+}$ correlated with acute metabolic and respiratory alkalosis in rodent model. Metabolic alkalosis was induced by intravenous infusion with $NaHCO_3$ and mechanical hyperventilation was applied for respiratory alkalosis. We founded that the blood ionized $Mg^{2+}$ could be reversibly decreased by the $NaHCO_3$-induced acute metabolic alkalosis but irreversibly increased by the mechanical hyperventilation-induced respiratory acidosis and respiratory acidosis. We suggested that the potential change in blood suggested that the potential change in blood ionized $Mg^{2+}$ should be counted in treatment of acid-base disorders.

Effect of Acute High-intensive Swimming Exercise on Blood Electrolytes and Metabolites (단기간 고강도의 수영운동이 혈액 이온 및 대사산물에 미치는 영향)

  • Kim, Shang-Jin;Park, Hye-Min;Shin, Se-Rin;Jeon, Seol-Hee;Kim, Jin-Shang;Kang, Hyung-Sub
    • Journal of Veterinary Clinics
    • /
    • v.27 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • Magnesium ($Mg^{2+}$) is an essential co-factor for over 325 physiological and biochemical processes so that plays a central role of neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, vasomotor tone, and blood pressure significantly related to physical performance. However, only limited information on blood ionized $Mg^{2+}$ ($iMg^{2+}$) regarding to physical exercise is available and the data from blood total $Mg^{2+}$ detection are inconsistent. This present study investigated the changes of blood $iMg^{2+}$ correlated with metabolic demands during acute high-intensive exhaustive physical exercise in rats. After exhausted swimming (3-4 hours), blood pH, glucose, $HCO_3{^-}$, oxygen and ionized $Ca^{2+}$ ($iCa^{2+}$) were significantly decreased, whereas lactate, carbon dioxide, $iMg^{2+}$, ionized $Na^+$ and ionized $K^+$ were significantly increased. During the exhausted swimming, the changes in $iMg^{2+}$ showed a significant negative correlation with changes in pH, glucose, $HCO_3^-$ and $iCa^{2+}$, however a significant negative correlation with changes in lactate and anionic gap. It is concluded that the acute high-intensive exhaustive physical exercise could produced hypermagnesemia, an increase in blood $iMg^{2+}$ via stimulation of $iMg^{2+}$ efflux following increase in intracellular $iMg^{2+}$ from muscle induced by metabolic and respiratory acidosis.

Effects of Dietary Calcium Levels on Blood Pressure and Calcium Metabolism in Normotensive Female Young Adults with the Hypertension Family History (식이 칼슘 섭취수준이 고혈압 가족력이 있는 청년기 여성의 혈압 및 칼슘대사에 미치는 영향)

  • 이정원
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.728-742
    • /
    • 1993
  • The effects of dietary calcium levels on the blood pressure and calcium metabolism were investigated. Nine normotensive female college students having hypertention family history were participated in 4-week dietary expeiments. They were provided with either high Ca diet (HCa, average 797mg/day) or low Ca diet(LCa, average 225mg/day) during two weeks, each, consecutively. Sodium amounts of the body diets were 3566~4022mg/day, which were ordinary sodium intake levels in Korea. After the HCa, systolic blood pressures(SBR) in both seated and isogrip-seated postitions were decreased by about 2.5mgHg, comparing with those after the LCa(p<.05). Diastoilc blood pressures(DBP) were not changed by dietary calcium levels. Serum total Ca, ionized Ca, Mg and P levels and Ca/Mg ratio were not different between the HCa and the LCa. Serum parathyroid hormone(PTH) levels were similar between two diets, but individually in seven of nine subjects, the slightly lower values of PTH were observed after the HCa than after the LCa. Urinary excretion of Ca(p<.01), Mg(p<.05) and P(p<.1) were increased after the HCa comparing with the LCa, but Ca/Mg ratio were not different between the two diets. SBP was in positive correlations with boty urinary excretion of Ca(supine, r=.7356, p<.05) and urinary Ca/Mg ratio(isogrip-seated, r=.7483, p<.05). SBP was also negatively correlated with serum P level(supine, r=-.6930, p<.05) and DBP was in negative correlation with urinary P excretion(seated, r=-.8586, p<.01). Serum total and ionized Ca, Mg, Ca/Mg ratio were not significantly correlated with blood pressures.

  • PDF

Changes of Total and Ionized Calcium following Cardiopulmonary Bypass (심폐관류에 따른 혈청칼슘의 변동)

  • 전상훈
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.240-245
    • /
    • 1988
  • This study was prospectively planned to realize the reduction of calcium ion in serum along with the cardiopulmonary bypass[CPB], to find out the cause of the reduction, and to verify the justification of the classical methods of calcium replacement. Nine patients with various open heart surgeries by CPB in 1987 wee selected at random. Calcium chloride was added as follows:: For each unit of ACD blood transfusion, 600mg of calcium chloride was added. In case of massive transfusion, 600 mg of calcium chloride was injected every 2 or 3 units of transfusion. On occasions such as weaning from CPB, or following defibrillation, or hypotension, weak myocardial contractility of the heart, calcium chloride was needed in an amount of 10 mg / kg. In ICU, calcium chloride was limited to use in low serum level or in emergency use. Total calcium decreased early bypass and progressively increased above the preoperative value during late bypass and three hours thereafter, Ionized calcium increased during late bypass and three hours following. Total and ionized calcium depicted similar patterns of change during open heart surgery. Decrease of the calcium at the early bypass was thought from reduction of total protein and alkalosis during bypass. Meanwhile, increase of both calciums during the end of surgery was presumably attributable to addition of calcium chloride in priming solution, injections of calcium chloride in the process of termination of bypass. We conclude that enough calcium was replaced by the classical methods of calcium supplement.

  • PDF

Changes of Blood $Mg^{2+}$ and $K^+$ after Starvation during Molting in Laying Hens (환우(換羽, molting)에 의한 절식 후 산란계의 혈액 $Mg^{2+}$$K^+$ 변동)

  • Go, Hyeon-Kyu;Lee, Sei-Jin;Cho, In-Gook;Lee, Mun-Young;Park, Hye-Min;Mun, A-Reum;Kim, Jeong-Gon;Kim, Gi-Beum;Kim, Jin-Shang;Kang, Hyung-Sub;Kim, Shang-Jin
    • Journal of Veterinary Clinics
    • /
    • v.28 no.6
    • /
    • pp.581-585
    • /
    • 2011
  • Either the fasting during natural molting or the starvation in induced molting would be a severe metabolic stress to laying hens. The metabolic stress during starvation and subsequent refeeding syndrome could lead to unbalance of mineral homeostasis, including $Mg^{2+}$, $K^+$ and P required by ATP synthesis. Since $Mg^{2+}$ is a fundamental ion for normal metabolic processes and stress may not only increase in demands of $Mg^{2+}$ but also produce consequence of $Mg^{2+}$ deficiency, we investigated the changes of blood ionized and total ions related to starvation during molting in laying hens. We founded the significant decrease in blood $Mg^{2+}$ and $K^+$ accompanied by the changes of biochemical parameters relating to increased metabolic stress after molting. These results suggested that appropriate $Mg^{2+}$ and $K^+$ supplements to laying hens could have beneficial effects during molting and subsequent refeeding that could produce a severe hypomagnesemia and hypokalcemia.