• Title/Summary/Keyword: blocking model

Search Result 412, Processing Time 0.026 seconds

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF

Inhibitory Effects of Olmesartan on Catecholamine Secretion from the Perfused Rat Adrenal Medulla

  • Lim, Hyo-Jeong;Kim, Sang-Yong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan ($5{\sim}50{\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane-depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of voltage-dependent L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), veratridine (100 ${\mu}M$, an activator of voltage-dependent $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations ($150{\sim}300{\mu}M$), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement on the CA secreton.

An Adaptive Load Control Scheme in Hierarchical Mobile IPv6 Networks (계층적 모바일 IP 망에서의 적응형 부하 제어 기법)

  • Pack Sang heon;Kwon Tae kyoung;Choi Yang hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1131-1138
    • /
    • 2004
  • In Hierarchical Mobile Ipv6 (HMIPv6) networks, the mobility anchor point (MAP) handles binding update (BU) procedures locally to reduce signaling overhead for mobility. However, as the number of mobile nodes (MNs) handled by the MAP increases, the MAP suffers from the overhead not only to handle signaling traffic but also to Process data tunneling traffic. Therefore, it is important to control the number of MNs serviced by the MAP, in order to mitigate the burden of the MAP. We propose an adaptive load control scheme, which consists of two sub-algorithms: threshold-based admission control algorithm and session-to-mobility ratio (SMR) based replacement algorithm. When the number of MNs at a MAP reaches to the full capacity, the MAP replaces an existing MN at the MAP, whose SMR is high, with an MN that just requests binding update. The replaced MN is redirected to its home agent. We analyze the proposed load control scheme using the .Markov chain model in terms of the new MN and the ongoing MN blocking probabilities. Numerical results indicate that the above probabilities are lowered significantly compared to the threshold-based admission control alone.

Fructose 1.6-diphosphate Prevents Cyclooxygenase-2 and Matrix Metalloproteinases Expression by Inhibition of UVB-induced Signaling Cascades in HaCaT Keratinocytes (인체각질형성세포에서 Fructose 1,6-diphosphate의 자외선에 의해 유도되는 Cyclooxygenase-2 and Matrix Metalloproteinases의 발현억제기전)

  • Soo Mi, Ahn;Ji Hyun, Kim;Byeong Gon, Lee;Soo Hwan, Lee;Ih Seoup, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.247-251
    • /
    • 2004
  • UV radiation exerts various influences in the skin, including photoaging and inflammation (1). The MMPs (Matrix metalloproteinases), which are induced by UV irradiation, can degrade matrix proteins, and these results in a collagen deficiency in photodamaged skin that leads to skin wrinkling. It has been known that the production of PGE$_2$ stimulates MMPs expression, and inhibits procollagen (2). Thus, it is possible that the induction of MMPs and the inhibition of matrix protein synthesis by UV -induced PGE$_2$ may play some role in UV-induced collagen deficiency in photoaged skin. Fructose-1,6-diphosphate (FDP), a glycolytic metabolite, is reported to have cytoprotective effects against ischemia and postischemic reperfusion injury of brain and heart, presumably by augmenting anaerobic carbohydrate metabolism (3). And also, FDP significantly prevent skin aging by decreasing facial winkle compared with vehicle alone after 6 months of use. We studied the mechanism of anti-aging effect of FDP on UVB-irradiated HaCaT keratinocyte model. FDP has protective role in UVB injured keratinocyte by attenuating prostaglandin E$_2$ (PGE$_2$) production and COX-2 expression. And FDP also suppressed UVB-induced MMP-2 expression. Further, to delineate the inhibition of UVB-induced COX-2 and MMPs expression with cell signaling pathways, treatment of FDP to HaCaT keratinocytes resulted in marked inhibition of UVB-induced phosphorylation of ERK1/2, JNK. It also prevents UV induced NFB translocation, which are activated by cellular inflammatory signal. Our results indicate that FDP has protecting effects in UV-injured skin aging by decreasing UVB-induced COX-2 and MMPs expression, which are possibly through blocking UVB-induced signal cascades.

Influence of Kamijihwang-hwan on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (가미지황환이 저산소성 신경세포 손상에 미치는 영향)

  • Kyung Baek Yeun;Ju Sung Min;Kim Kun Jun;Kim Dae Keun;Kang Jeong Ho;Lee Young Chan;Lee Jun;Kim Young Mok;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1082-1091
    • /
    • 2003
  • To elucidate the neuroprotective effect of Kamijihwang-hwan(KSH) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT, NR, MTT and SRB asssay. The activity of catalase and SOD was measured by spectrophometry, and TNF-α and PKC activity was measured after exposure to hypoxia and treatment of Kamijihwang-hwan(KSH) water extract(KJHWE). Also the neuroprotective effect of KJHWE was researched for the elucidation of neuroprotective mechanism. The results were as follows ; Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 2~26 minutes in these cultures and KJHWE inhibited the decrease of cell viability. H₂O₂ treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 uM for 6 hours, but KJHWE inhibited the decrease of cell viability. Hypoxia decreased catalase and SOD activity, and also TNF-α and PKC activity in these cultured cerebral neurons, but KJHWE inhibited the decrease of the catalase and SOD activity in these cultures. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c form mitochondria. KJHWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxity on cultured mouse cerebral neurons, and the KJHWE has the neuroprotective effect in blocking the neurotoxity induced by hypoxia in cultured mouse cerebral neurons.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Cause Analysis and Improvement Suggestion for Flood Accident in Dorimcheon - Focused on the Tripping and Isolation Accidents (도림천에서 발생한 고립 및 실족사고의 원인분석을 통한 개선방안 도출에 관한 연구)

  • Lee, Kyung-Su;Jeon, Jong-Hyeong;Kim, Tai-Hoon;Kim, Hyunju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.25-36
    • /
    • 2021
  • This study analyzed the causes of flood accidents, such as isolation and lost footing accidents in Dorimcheon, to provide legal and institutional improvements. For cause analysis, Field Investigation, Stakeholder Interview, Report, manual, Law et al. Review, Analysis of water level change characteristics, automatic alarm issuance standard level analysis, and evacuation time according to river control were evaluated. Dorimcheon has the characteristics of a typical urban river, which is disadvantageous in terms of water control. In addition, the risk of flood accidents is high because the section where fatal accidents occur forms sharply curved channels. Tripping and isolation accidents occur in the floodplain watch and evacuation stage, which is the stage before the flood watch and warning is issued. Because floodplain evacuation is issued only when the water level rises to the floodplain, an immediate response according to the rainfall forecast is essential. Furthermore, considering that the rate of water level rise is up to 2.62 cm/min in Sillimgyo 3 and Gwanakdorimgyo, sufficient evacuation time is not secured after the floodplain watch is issued. Considering that fatal accidents occurred 0.46 m below the standard water level for the flood watch, complete control is very important, such as blocking the entry of rivers to prevent accidents. Based on these results, four improvement measures were suggested, and it is expected to contribute to the prevention of Tripping and Isolation Accidents occurring in rivers.

Design and Implementation of an E-mail Worm-Virus Filtering System on MS Windows (MS 윈도우즈에서 E-메일 웜-바이러스 차단 시스템의 설계 및 구현)

  • Choi Jong-Cheon;Chang Hye-Young;Cho Seong-Je
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.37-47
    • /
    • 2005
  • Recently, the malicious e-mail worm-viruses have been widely spreaded over the Internet. If the recipient opens the e-mail attachment or an e-mail itself that contains the worm-virus, the worm-virus can be activated and then cause a tremendous damage to the system by propagating itself to everyone on the mailing list in the user's e-mail package. In this paper, we have designed and implemented two methods blocking e-mail worm-viruses. In the fist method, each e-mail is transmitted only by sender activity such as the click of button on a mail client application. In the second one, we insert the two modules into the sender side, where the one module transforms a recipient's address depending on a predefined rule only in time of pushing button and the other converts the address reversely with the former module whenever an e-mail is sent. The lader method also supports a polymorphism model in order to cope with the new types of e-mail worm-virus attacks. The two methods are designed not to work for the e-mail viruses. There is no additional fraction on the receiver's side of the e-mail system. Experimental results show that the proposed methods can screen the e-mail worm-viruses efficiently with a low overhead.

A study for Information Security Risk Assessment Methodology Improvement by blockade and security system level assessment (봉쇄와 보안장비 수준평가를 통한 정보보호 위험평가 개선 연구)

  • Han, Choong-Hee;Han, ChangHee
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.187-196
    • /
    • 2020
  • In order to manage information security risk, various information security level evaluation and information security management system certification have been conducted on a larger scale than ever. However, there are continuous cases of infringement of information protection for companies with excellent information security evaluation and companies with excellent information security management system certification. The existing information security risk management methodology identifies and analyzes risks by identifying information assets inside the information system. Existing information security risk management methodology lacks a review of where cyber threats come from and whether security devices are properly operated for each route. In order to improve the current risk management plan, it is necessary to look at where cyber threats come from and improve the containment level for each inflow section to absolutely reduce unnecessary cyber threats. In addition, it is essential to measure and improve the appropriate configuration and operational level of security equipment that is currently overlooked in the risk management methodology. It is necessary to block and enter cyber threats as much as possible, and to detect and respond to cyber threats that inevitably pass through open niches and use security devices. Therefore, this paper proposes additional evaluation items for evaluating the containment level against cyber threats in the ISMS-P authentication items and vulnerability analysis and evaluation items for major information and communication infrastructures, and evaluates the level of security equipment configuration for each inflow.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.